

SANDIA REPORT
SAND2016-11835
Unlimited Release
Printed November 2016

AE Recorder Characteristics and
Development

Michael E Partridge, Shane K Curtis, David P McGrogan

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@osti.gov
 Online ordering: http://www.osti.gov/scitech

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5301 Shawnee Rd
 Alexandria, VA 22312

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.gov
 Online order: http://www.ntis.gov/search

 3

SAND2016-11835
Unlimited Release

Printed November 2016

AE Recorder Characteristics and Development

Michael E Partridge, Shane K Curtis, David P McGrogan
Advanced Fuzing Technologies Department
Threat Analysis Technologies Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS0661

Abstract

The Anomalous Environment Recorder (AE Recorder) provides a robust data
recording capability for multiple high-shock applications including earth penetrators.
The AE Recorder, packaged as a 2.4” diameter cylinder 3” tall, acquires 12
accelerometer, 2 auxiliary, and 6 discrete signal channels at 250k samples / second.
Recording depth is 213 seconds plus 75ms of pre-trigger data. The mechanical,
electrical, and firmware are described as well as support electronics designed for the
first use of the recorder.

4

Acknowledgments

The quick response developing a complete high-shock on-board data recorder system in only 13
months requires a strong team effort including excellent customer support. The recorder design
was based on the partially-completed 3DDR-AM recorder developed under sponsorship of
Danny Hayles, retired from DTRA. The recorder housing mechanical design began with an
initial approach by Matthew Neidigk on 3DDR-AM, and then refined by Shane Curtis for the AE
Recorder. The many other mechanical parts were Shane’s alone. The signal conditioning was
developed by Cory Larsen for 3DDR-AM. David McGrogan designed the SmartFusion gate
array and associated firmware, and wrote the Digital section of this report. Jay Smith wrote the
LabWindows testing software for the analog board and assembled system. Jeremy Giron
developed firmware for the analog and power /interface boards, and with Stephen Simpson’s
help, refined the firmware and Coulomb-counter hardware on the Battery Management System.
David Cutler created the fiber-optic aspects of the design, and developed LabWindows software
for the track-side control plus firmware for the fiber optic interface on-board the test article.
Berto Jimenez assembled the flight hardware with his characteristic high precision, resulting in
the demonstrated reliability of the system. The clear board and assembly photos in this report
are also Berto’s. Finally, the team is greatly appreciative of Matt Brewer, our customer for the
system, who pushed us hard enough to produce technical excellence.

 5

CONTENTS

Introduction ... 9
Design Requirements .. 9
Design Implementation Summary .. 11
Auxiliary Equipment for Fielding ... 12
Why a Check Channel Is Important .. 14
Project Costs and Duration ... 15

Mechanical Design.. 16
Mechanical Modeling & Simulation ... 17
Encapsulation .. 22

Electronics Design .. 24
Energy Storage & Power Conversion ... 24
Signal Conditioning .. 29
Control, Digitization, and Memory ... 36
On-Board Instrumentation Support Electronics Design ... 60

Conclusions ... 68

References ... 69

Appendix A – Alphabetical Command List .. 72

Appendix B – Command List by Category ... 74
Collecting Data ... 74
Retrieving Data ... 74
Configuration .. 74
Diagnostics .. 75
Recorder Identity .. 76
Power and Reset .. 76
Help and Manual Control.. 76
Advanced and Special Purpose ... 76

Appendix C – Command Descriptions in Depth .. 77

Distribution ... 121

6

FIGURES
Figure 1. AE Recorder Cut-Away ... 9
Figure 2. Block Diagram of the Anomalous Environment Data Recorder 12
Figure 3. AdPen-NV Check Channel Showing Piezoelectric Data Contamination 15
Figure 4. AE Recorder Assembly before Encapsulation ... 16
Figure 5. AE Recorder with Cap Installed. ... 17
Figure 6. AE Recorder finite element model mesh.. 19
Figure 7. Housing Von Mises Stress State at 25kG Peak .. 20
Figure 8. 828/DEA/GMB Potting Maximum Principal Stress State at 25kG Peak 21
Figure 9. Capattery Housing Equivalent Plastic Strain at -20C with 5000 lb. Preload (Half
symmetry shown at 10x displacement magnification.)... 22
Figure 10. AE Recorder Mold Fixture Assembly. ... 23
Figure 11. Encapsulated AE Recorder Modules. ... 24
Figure 12. Capattery Temperature Effects on ESR and Capacitance .. 25
Figure 13. Opened Capattery Shell with the Core Visible ... 25
Figure 14. Top Level 3A6999-002 Power / Interface Board ... 26
Figure 15. 3A6999-002 Power / Interface Board, Front and Back .. 27
Figure 16. In-Rush Current Limit as Implemented Using a Current Mirror Circuit 28
Figure 17. Generic 2-Pole Low-Pass Filter Characteristics ... 30
Figure 18. Top-Level 3A7000-002 Analog Board Schematic ... 31
Figure 19. Signal Conditioning Per Channel ... 32
Figure 20. 57 KHz Phase-Compensated Butterworth Low-Pass Filter with -1.25 Gain 32
Figure 21. Digital-to-Analog Converters Adjust Balance and Threshold 33
Figure 22. One of Two Discrete Channel Comparator Circuits .. 34
Figure 23. Analog Board Microprocessor Controls Gain and Balance 35
Figure 24 Block Diagram for Digital Control.. 36
Figure 25. 3A6998-002 Digital Board ... 37
Figure 26. Digital Board Hierarchical Top Level .. 37
Figure 27. Analog-to-Digital Converter Schematic ... 39
Figure 28. NAND Flash and FRAM Memory Interface .. 41
Figure 29. Smart Fusion Discrete Signal and Serial Interface ... 42
Figure 30. Recorder Configurations Diagram ... 47
Figure 31. 3A7001-002 Safe-State Monitor Board Schematic .. 61
Figure 32. 3A7001-002 Safe-State Monitor Board .. 61
Figure 33. Fiber-Optic and Microcontroller Schematic Portion of the 3A7002 Board 62
Figure 34. Connections to the 3A7001 Safe-State Monitor Board .. 64
Figure 35. AE Recorder Connections from the 3A7002 Board ... 65
Figure 36. SMPC Produces 16V Power from the 32V Nominal Battery 65
Figure 37. Battery Management System Hierarchical Schematic Top Level 66
Figure 38. Battery Management System Sleep Monitor Circuit .. 67
Figure 39. 3A7004-002 Battery Management System Board .. 67

 7

TABLES
Table 1. AE Recorder Features .. 10
Table 2. Elastic Plastic Power Law Hardening Model Parameters for 304L and PH 13-8 Mo
Stainless Steels. ... 19
Table 3: Temperature Dependent Functions for Thermo-Elastic Plastic Power Law Hardening
Model for 304L Stainless. ... 20
Table 4: FEA Results for AE Recorder Housing. ... 20
Table 5: FEA Results for AE Recorder 828/DEA/GMB Potting. .. 21
Table 6. Power / Interface Board Configuration Op Codes ... 29
Table 7. Analog Board Configuration Op Codes ... 35
Table 8. AE Recorder Operating Modes .. 46
Table 9. Analog Channel Indexing .. 48
Table 10. Analog Input Sorted by Channel Index ... 49
Table 11. NAND Flash Memory Glob Definition ... 51
Table 12. Data Record Structure Organized in 1-Byte Increments ... 52
Table 13. Data Record Structure Organized in 3-Byte Sequence .. 52
Table 14. Internal ADC Data Storage in FRAM across Consecutive Records 54
Table 15. FRAM Addresses for Trigger and Housekeeping Data ... 54
Table 16. NAND Flash Pseudo-Record Structure for Trigger and Housekeeping Data 55
Table 17. AE Recorder Configuration Command List .. 58

8

NOMENCLATURE
3AMP 3-Axis MilliPen penetrator data recorder, 4 channel, 75ksps, 218-msec record
3AMP Interim Replaced 3AMP sunset components, 6 channel, 75ksps, 581-msec record
3DDR-AM 3-Axis DTRA Data Recorder – Advanced Miniaturization
ADC Analog-to-Digital Converter
CMRR Common-Mode Rejection Ratio
CTE Coefficients of Thermal Expansion
DAC Digital-to-Analog Converter
DOE Department of Energy
DTRA Defense Threat Reduction Agency
GMB glass micro-balloon, a fill material for epoxy encapsulation
HiCapPen High-Capacity Penetrator data recorder, 19 channel, 150ksps, 100-sec record
ksps kilo-samples per second
MFB Multiple Feedback
PGA Programmable Gain Amplifier
SMPC Switch-Mode Power Converter
SNL Sandia National Laboratories
SPI Serial-Programmable Interface

 9

INTRODUCTION
The Anomalous Environment Recorder (AE Recorder) provides a robust data recording
capability for high-shock applications such as earth penetrator instrumentation and impact
testing. The expanded-capability, high-fidelity AE Recorder acquires 12 accelerometer, 2
auxiliary, and 6 discrete signal channels at 250k samples / second with more than 213 seconds
recording depth, plus 75ms of pre-trigger data. The small, 2.4” diameter design is also compact
enough to support sub-scale penetrator tests including fuze development.

A challenge designing on-board instrumentation for the B61-12 anomalous environment test
series was addressing operational safety. Following the 2008 sled track accident 1 (1) (2), sled
track tests at Sandia involving on-board instrumentation were essentially eliminated because
energy necessary for operating instrumentation could inadvertently fire energetic devices.
Restarting instrumented sled test operations required reconsideration of all test processes, with
additional analysis and mitigation.

Figure 1. AE Recorder Cut-Away

Design Requirements
Requirements for the AE Recorder were negotiated with the impact test customer. Each of the
12 accelerometer channels has electronically programmable gain and balance. The remaining
two analog channels measure the internal capattery voltage and external battery voltage, which
are useful for validating data and planning future tests. Although no channels are specifically
dedicated for use as a check, or dummy, channel, customers are strongly urged to allocate a
channel for this purpose to allow verification that the data collected were not corrupted by the
instrumentation itself (see the discussion in section Why a Check Channel Is Important). Using a
check channel is very important because the system is intended for use in new regimes beyond
current levels of impact shock where instrumentation capabilities are also unproven. The
performance of the AE Recorder as implemented is summarized in Table 1 below.

1 During preparation for a rocket sled track event on 9 October 2008, there was an unexpected ignition of the Zuni
rocket motor. Three Sandia staff and a contractor were involved in the accident; the contractor was seriously
injured and made full recovery. The data recorder battery energized the low energy initiator in the rocket.

2.35”

10

Table 1. AE Recorder Features
User Channels:
Accelerometer Channels: 12
Housekeeping: 2 – Battery Voltage, Capattery Voltage
Discrete (Bi-Level) 8 – Trigger Fiducial, Sync, and 6 comparator
Sample rate: 250k samples per second per channel
Anti-alias low-pass filter: 7-pole Butterworth, 50kHz bandwidth
Recording Time: 213 seconds maximum with 75ms pre-trigger
Gain, reprogrammable: 6 to 320, steps of 6.25 x (1 .. 128)
Balance, reprogrammable: 0 to 5V

Trigger Configuration
Trigger channel: Any analog or bi-level channel
Trigger window: Programmable 0 to 100% of channel range
Trigger qualification width: Programmable 1 to 255 samples (3.4ms)
Trigger modes: Internal trigger channel, Computer trigger
Arm modes: Computer Arm, Delay Arm, Arm on Power
Arm delay time: 0 to 1023 minutes

Power and Control
Supply voltage: 16V maximum, 6V minimum
Supply current: Low-power (delay arm): 25mA @ 16V;

Full-power: 150mA @ 16V
Internal capattery: 16V, 120mF providing 5-sec nominal power
Baud rate: 115.2k Baud command, 150Mbps SerDes data

Environmental and
Mechanical

Operational shock: More than 20,000 G
Temperature: -20°C to 70°C
Data recorder weight: 1.4 pounds
Materials: PH 13-8 Mo Stainless Steel
Encapsulation: 828/DEA/GMB with procedure SS2A0780
Data recorder dimensions: 2.35” diameter, 3.0” tall

Other requirements are internal stored energy that allows the recorder to operate after external
power is lost; the ability to self-monitor the impact environment once the recorder is armed, and
then self-trigger; signal processing of accelerometer signals with a low-pass filter; and obviously
for a memory-based system the need to survive impact and retain the data collected for later
retrieval. Although not required for the initial application, a stand-alone operating capability
facilitates gun-launched tests so that only an external battery is needed, and leads to broader
applicability of the AE Recorder for other high-shock measurement applications.

 11

Design Implementation Summary
The internal stored energy requirement is fulfilled using a special robust component called a
double-layer capacitor or capattery, which can supply power for 5 seconds following battery
loss. During the 3DDR-AM development on which the AE Recorder was based, we investigated
concerns of mechanical reliability for this component with laboratory tests plus modeling and
simulation (3). Data are stored in two types of non-volatile memory, so do not require keep-alive
power post-test to hold information.

Self-triggering when in an armed mode is especially useful for gun-launched penetrator tests.
Any single or multiple analog or discrete channel can be configured as the recording trigger.
The recorder is normally configured to trigger on any significant acceleration change, so for gun
tests the acceleration impulse is also be recorded, so that the complete launch-to-impact profile is
captured. Self-triggering also minimizes external wiring since the recorder can be left in arm
mode for hours while waiting for trigger, with the time limited only by battery life.

Because accelerometers are the most common sensor used with shock-hardened recorders like
the AE Recorder, signal processing is a necessity for removing high-frequency signal
components. No real-world filter has a “brick wall” abrupt filter characteristic, so the corner
frequency must be selected to consider both the sample rate and realistic filter characteristics.
Even at the high 250k samples per second offered by the AE Recorder, aliasing will result unless
a low-pass filter attenuates the contribution of frequencies beginning at about 50 kHz.

In addition to their wide output bandwidth, another characteristic of piezoresistive
accelerometers is non-zero offset that varies with the device and the same device over
temperature. For this reason, the AE Recorder includes a field-adjustable offset adjustment.
Even with the signal balanced when the unit is first armed and while waiting for trigger,
temperature changes will result in a signal shift of unpredictable magnitude and direction. The
AE Recorder includes a patented algorithm for continually adjusting the trigger threshold to
compensate. (4)

Field-programmable gain allows adjusting the signal range of interest to meet the expected
sensor output. The settings are in convenient binary increments: 1, 2, 4 ... 128 times the base
gain. The initial version of the AE Recorder used a 1.25 base gain, and the second version used
6.25. This range covers nominal outputs for sensors appropriately selected for the expected
impact environment.

The threshold for the six user discrete signal inputs is also adjustable in the field from near zero
to nearly 3V. Two additional discrete signals are internal and use TTL-level thresholds: Trigger
which marks detection of the trigger fiducial, and Synchronization which is intended to capture a
common signal applied to a group of recorders that allows later alignment of the recorded data
post-test.

An important concern in a recorder design with a Gigabyte of memory is time to extract the data.
This was addressed on the AE Recorder by developing a high-speed, serial interface based on the
SerDes (Serializer-Deserializer) electronic device. The 150Mbps rate enables data extraction at
about the same speed it is recorded. A second low-speed interface at 115.2k Baud permits

12

recorder configuration and can be used for data extraction. We developed special fielding
interface hardware to encompass both interface types in a simple, USB-connected interface.

Figure 2. Block Diagram of the Anomalous Environment Data Recorder

The electronics design block diagram, as shown in Figure 2, was segmented into three circuit
board types, resulting in 5 circuit boards in the AE Recorder housing because the analog / signal
conditioning board is used three times with four channels each. The “Interface” and “Energy
Store & Power Conversion” blocks are implemented as one circuit board, 3A6999-002 Power /
Interface. A switch-mode power converter on this board reduces the capattery voltage to 6V for
distribution to all other boards. The “Comparators” and “Signal Conditioning” blocks,
implemented on the 3A7000-002 Analog board, accept external signals and condition them for
digitization on the 3A6998-002 Digital board. The Digital board implements the “Control Logic
and Memory” block, with logic in the Actel Smart Fusion gate array directing the output from
the two, 6-channel Analog-to-Digital Converter chips using into either the 75 millisecond deep
FRAM non-volatile circular buffer or the 210-second deep NAND Flash. The “Serial
Connection” interface for configuration, command, and high-speed data extraction is also
implemented on the Digital board. The concept of microcontroller-plus-FPGA logic was first
employed in HiCapPen (5), but improved here with the use of a single device combining
microcontroller and logic functions.

Auxiliary Equipment for Fielding
Although the AE Recorder forms the data acquisition system core, varying levels of other
support electronics are needed to complete the instrumentation depending on the application.
This auxiliary equipment can be as simple as a battery for a gun-launched test, but the other

 13

extreme is a sled track test with electrical isolation that requires fiber-optic communication and
internal battery power with a built-in battery management system.

Fiber-Optic Communication and Control
For the B61 sled track test, the AE Recorder on-board instrumentation uses a multi-mode fiber-
optic connection to control power on and exchange data. At the sled track facility, single-mode
fiber from the track control room runs more than a mile to a track-side box near the test article.
At that location, the single-mode fiber is converted to multi-mode for connection to the test
article using an assembly of commercial fiber media converter modules. The multi-mode fiber
runs as far as 1000 feet from this point to a fiber junction box near the test article. The last 20
feet of fiber from that junction is terminated in a multi-fiber connector, which finally connects to
the test article.

Using multi-mode fiber on the test article was a practical adaptation to the extremely dusty
outdoor environment of sled track operations, where dust particle size approximates the fiber
diameter of single-mode fiber. On board the test article, multi-mode fibers are used to drive
photo-diodes to turn system power on, and transceivers to exchange command and configuration
data. After qualifying the turn-on signal, the 3A7002-003 External Fiber-Optic Interface Board
latches power and waits for commands. The microprocessor monitors both receive channels, and
if the primary channel fails the input is switched to the secondary input fiber. The selected serial
stream is applied to all the recorders, which then select messages based on address. The fiber-
optic transmit always sends on both fibers simultaneously.

On-Board Instrumentation Power Source
In addition to the fiber interface, the 3A7002-003 External Fiber-Optic Interface Board contains
switch-mode power converters to reduce the 36.5V maximum LiFePO4 battery voltage to 16V
for distribution to the AE Recorder modules, and another SMPC to step down the 16V to 5V for
use by the fiber optics and microprocessor. Each AE Recorder module draws about 150mA at
16V with accelerometers connected. The 3A7002 board, and the 3A7004 Battery Management
System board which receives 5V power from the 3A7002 board, draw about 50mA at 16V.
Total current for the four AE Recorder modules and support equipment is then about 650mA at
16V. The SMPC producing 16V output from the 32V nominal battery voltage is about 80%
efficient, so draws less than 0.5A from the battery which is composed of 10 each K2 Energy
LFP26650P80 cells, 2.6A-Hr nominal. Thus, a fully-charged battery should operate the system
for about 5 hours. During non-operational time, the battery management system is set to Sleep
mode which draws about 0.1mA, equivalent to less than 5% self-discharge after one month.

An internal, rechargeable battery seemed the best design choice for providing instrumentation
power. Using an externally-attached battery is not feasible when explosives safety is considered
because a battery provides energy compatible with explosive initiators. With the internal battery,
mitigation was needed to ensure the battery remained isolated from electrical conductors
penetrating the test article’s metal surface. Following the first sled test, an alternative was raised
that applied external, remotely-controlled power just before launch to a large, internal capacitor
bank. This idea was evaluated but not pursued due to time and funding constraints.

14

Once established that an internal battery would be used, it seemed prudent to use a rechargeable
battery. Although the internal battery could have been a primary (non-rechargeable) battery,
on-board instrumentation assembly and check-out can use varying and unpredictable amounts of
power. Time between test article assembly and the actual test date could also be several months.
Partial disassembly of the test article to replace an internal, isolated battery was unacceptable.
Thus, a secondary (rechargeable) battery was selected using LiFePO4 chemistry. The very low
self-discharge rate from LiFePO4 and the associated battery management system should allow
recharging after test article assembly and check-out is complete and no further servicing for
several months, however, since the recharging capability is readily available, the battery is
topped off on the day of test.

Electrical Connections for Test Article Status and Battery Charge
Finally, 3A7001-002 Safe-State Monitor interface panel contains electrical connections to
monitor and service the battery, LED indicators that instrumentation power was active, and a
location from which to distribute flashing “Blink” LEDs to correlate test article movements
captured on camera with the AE Recorder data. The electrical connections are in a socket-type
circular military connector covered by a metal dust cap to ensure no exposure of electrical
conductors.

The same circular military connector is used on the 4A1390 Test Article Interface Box, which
provides a break-out connections for the test object’s circular connector signals that are used for
voltage verification, isolation tests, and battery charging. The box is disconnected from the test
article before launch. The box also provides a laptop computer-to-fiber optic connection to the
test article. The test object’s fiber-optic connector is located away from the interface panel. The
user interface software loaded on the test track console room computer is installed on the laptop,
which along with the interface box, translates fiber-optic controls for use during test article
assembly and check out.

One more item is helpful for procedure development and practice using the sled track
configuration. A 4A1396 Test Article Stand-In enables test track personnel to develop and
thoroughly practice procedures. It contains copies of the same circuit boards used in the real on-
board instrumentation, so reacts identically to the test article. It is designed to interface using the
4A1390 Test Article Interface Box.

Why a Check Channel Is Important
All electronic components have varying degrees of piezoelectric response, but in the AE
Recorder design this is practically limited to ceramic capacitors constructed of ferroelectric
dielectrics such as X7R. Research during the HiCapPen development (5) provided design
guidance that only C0G-type ceramic or tantalum capacitors should be used in the analog
amplification and signal conditioning circuits. Common mode noise injection may also occur
outside the analog signal chain from sensor excitation and analog circuit supply voltages. For
the bridge-type piezoresistive accelerometers, common-mode rejection is a function of the bridge
quiescent imbalance and the bridge resistance itself, driven by noise on the excitation voltage.

Unanticipated piezoelectric problems can occur in spite of this understanding of the phenomena
and using correct design principles. For this reason, users are strongly encouraged to dedicate

 15

some channels to check channels, also called dummy channels. When piezoelectric
contamination occurs, it is correlated with the expected acceleration measurements. The data
output plot in Figure 3 was taken from a gas gun launch pulse on an old development system
called AdPen-NV. This check channel had a dummy accelerometer input, but the output clearly
was not zero. Because the contamination is correlated with the intended acceleration, common
validation methods that integrate the acceleration measurement to produce velocity and
displacement data fail to detect the corruption.

Figure 3. AdPen-NV Check Channel Showing Piezoelectric Data Contamination

Project Costs and Duration
When the AE Recorder project was first funded 20 November 2014, a $910k development cost
was estimated. Requirements discovery early in the project revealed the additional requirement
to electrically isolate the instrumentation from anything contacting or outside the test article.
The subsequent design and implementation of an electrically isolated fiber-optic system to
control the test article from the sled track control room cost by itself $445k. Additional
incidental development affected the schedule and cost as well, such as design changes and
engineering work-arounds in response to Critical Design Review action items late in the
development. When the system was delivered December 2015, costs totaled $1.7M, with $1.4M
labor and $250k purchases.

Following the completely successful March 2016 sled track test, the customer requested
additional units but with design modifications. Minor changes affected nearly all the previously
designed circuit boards. Improvements in this build also included a stand-in test article with
greater similarity to the actual unit, more robust electrical connections for verifying isolation of
the instrumentation, and support hardware to simplify test article assembly and check-out.
Acknowledging that incremental costs are lower to build two sets of instrumentation now instead

16

of delaying that acquisition, we built two sets of on-board instrumentation to support the
upcoming sled track test plus a subsequent test. The $641k project funding early June 2016 was
anticipated to provide delivery November 2016.

MECHANICAL DESIGN
Sandia has developed earth penetrator instrumentation since 1974. In the beginning, the large,
6” diameter mechanical packages reflected the electronic technology at the time, with Dual-
Inline-Package (DIP) integrated circuits and very low levels of device integration. The first
microprocessor-controlled penetrator instrumentation, AdPen, was developed in 1996. Higher
levels of device integration and smaller component packaging resulted in a merely 3” diameter
recorder about 9” long with the first appearance of a rectangular notch in the steel cylinder
supporting the electronics. This same concept appeared in all subsequent penetrator
instrumentation designs and is successful because of its mechanical strength and relatively
simple electronics assembly process.

Figure 4. AE Recorder Assembly before Encapsulation

Development of the AE Recorder housing relied heavily on mechanical modeling and
simulation. Design trade-offs within the mechanical constraints led to parsing the electronic
design into five circuit boards of three types: Digital, Power/Interface, and three copies of the
Analog board. The Digital and Power/Interface boards required the most area, and consequently
they were located near the cylinder center. Board widths included sufficient space to
accommodate routing connecting wires over the board edges and yet leave sufficient
encapsulation depth, as shown in Figure 4. A benefit of the unconstrained, stirrup housing is that
it allows the epoxy-based encapsulant to relax during the curing process and relocate maximum
principal stresses away from the electronics.

Harnesses from an MDM-31P and MDM-15S on top and MDM-15P on bottom route to through-
hole connections on the boards. The plug-type connectors service the Analog boards, with 15
wires allocated to each board. This means the MDM-15P harness on the bottom only connects to
Analog Board 1, while wires are bifurcated from the MDM-31P to Analog 2 and Analog 3.

 17

About half the MDM-15S harness goes to each of the Digital and Power / Interface boards, with
all serial communication to the Digital board and power and discrete control to the Power /
Interface board.

The boards are mounted within the assembly using ten 3/16” length, #2-56 nylon standoffs to
mechanically suspend the boards within the housing. Two removable panels on top and bottom
of the recorder allow the boards to be assembled independent of the housing; once assembly is
complete, the electronics are inserted into the housing and mounted in place. While this feature
successfully prevents technicians from having to build a “ship in a bottle”, this is by no means an
easy product to assemble. Future revisions, if pursued, should focus on manufacturing
improvements. At the very least, pre-cut and formed ribbon wires or flex cables should be
designed to reduce the number of individual wire routes in the assembly.

For the B61-12 sled track application, each recorder was housed in steel sleeve to protect the
exposed windows of the recorder. However, the top of the recorder (i.e., the side with two
connectors), was still exposed. As a result, an aluminum cap was bolted to the top of the
recorder as an added measure of protection for the connectors2 (see Figure 5). Two small
notches in the top of the housing of the recorder (also visible in Figure 5) can be used to remove
the recorder from an upper level assembly such as a penetrator. Full details on the mechanical
design can be found in the assembly drawing: 3A5279D01.

Figure 5. AE Recorder with Cap Installed.

Mechanical Modeling & Simulation
Science-based engineering that includes modeling and simulation increases the likelihood that a
design is robust. A mechanical model is developed during negotiation with other team members
and evaluated for flaws. This first stage establishes the physical interfaces to which the assembly
will join, and the constraints from the electronic designer’s objectives. Once the model has
matured to a suitable point, the model’s stress profile over the entire life cycle is then captured
using a Multi-Stage FEA procedure. This is often an iterative process, where the mechanical

2 Examination of the recorder hardware after the sled track test indicated that debris did indeed hit the top of the
recorders. While some of the connectors were damaged, the cap did prevent direct impact to the potted
electronics.

18

model is evaluated and tweaked until the final solution is determined. Although all real-world
effects cannot be anticipated or modeled, this approach greatly improves performance during the
product’s life cycle.

Modeling and simulation was particularly important to the AE Recorder development because
the recorder will be subjected to both harsh thermal and dynamic environments. While gun-
launch and impact profiles for earth penetrator tests are known to some extent, the impact during
a sled test was conjecture with many assumptions.

An important consideration for encapsulated systems is residual stresses from the encapsulation
curing process. The elevated, 70°C curing temperature leaves thermally-induced stresses when
materials with disparate coefficients of thermal expansion are used. Residual manufacturing
stresses may significantly reduce material failure strength margins.

Another aspect is pre-loading. All gun-launched penetrator systems apply compressive loads of
up to 5000 pounds to the instrumentation package when building the test article. This pre-load is
intended to overcome compression applied to the recorder body on target impact, and avoids
“chattering” of the steel surfaces that affect data quality and damage accelerometers.

Simulating both the residual stresses and pre-load are accomplished with Implicit Quasi-Static,
Sierra S/M: Adagio. The simulation run shows stresses as the object is cooled from
encapsulation cure temperature down to the lowest operational temperature (in the case of the
sled track, -20°C). Stress is assumed to be zero at the elevated cure temperature. The model is
simplified by removing all electronic components from the boards except the large capattery.
Then, the simulation applies the compressive pre-load to the AE Recorder’s chamfered mounting
surfaces.

Finally, the anticipated impact acceleration is simulated using Explicit Dynamic, Sierra S/M:
Presto at the lowest operating temperature. As before, the forces are applied to the model’s
chamfered surfaces.

In summary, the FEA procedure is listed below:

1. Cool from potting cure temperature of 70C, to lowest operational temperature of -20°C
(Quasi-static, S/M: Adagio)

2. Apply 5000 lb. preload to chamfers (Quasi-static, S/M: Adagio)
3. At -20°C, accelerate using chamfered load surfaces with 25kG, 0.5ms haversine pulse

(Dynamic, S/M Presto)

The mesh of the finite element model is shown in Figure 6. The mesh contains 811,132 Hex8
Elements with an average size of 0.020”. Half symmetry was used to reduce computation
time/cost. As previously mentioned, individual electrical components were not modeled.

 19

Figure 6. AE Recorder finite element model mesh.

The housing material was modeled using an elastic-plastic power law hardening model for PH
13-8 Mo stainless steel in the H950 condition. The shell of the capattery was modeled using a
thermo-elastic plastic power law hardening model for 304L stainless steel. The power law
parameters for both of these materials can be found in Table 2, and the temperature dependent
functions for the 304L can be found in Table 3. The 828/DEA/GMB potting material was
modeled using the simplified potential energy clock model with parameters defined in Reference
(6). Likewise, the stiffness matrix used to determine input parameters for the 3D orthotropic
elastic model of the FR-4 material can be found in Reference (6). The elastomeric material used
to model the “guts” of the capattery were assumed to be the following: G = 0.26MPa, K =
10MPa, CTEtransverse = 31 ppm/C and CTEnormal = 84 ppm/C.

Table 2. Elastic Plastic Power Law Hardening Model Parameters for 304L and PH 13-8 Mo
Stainless Steels.

Parameter PH 13‐8 Mo 304L

Density (kg/m^3) 7800 7920

Young’s Modulus (Pa) 175E+9 194.5E+9

Poisson’s Ratio 0.264 0.264

Yield Stress (Pa) 800E+6 206.8E+6

Hardening Constant (Pa) 1.0E+9 0.86464E+9

Hardening Exponent 0.1 0.53574

Luder’s Strain 0.0 0.0

Beta 1.0 1.0

20

Table 3: Temperature Dependent Functions for Thermo-Elastic Plastic Power Law
Hardening Model for 304L Stainless.
Temperature

(K)
Thermal Strain

function
Young’s
Function

Poisson’s
Function

Yield Function

218 ‐0.001264 1.003 0.9697 1.1667

293 0.0 1.0 1.0 1.0

373 0.001348 0.97766 1.0303 0.8233

473 0.003107 0.9464 1.0606 0.69

573 0.004934 0.9085 1.0909 0.6

673 0.006840 0.8656 1.1174 0.53

773 0.008832 0.8177 1.1439 0.47

873 0.010846 0.7667 1.1704 0.42

The FEA results for the housing are listed in Table 4. A contour plot of Von Mises stress in the
housing at 25kG peak acceleration is shown in Figure 7. The maximum stress in the housing is
seen at the corners of the windows. The peak Von Mises stress at -20°C and with the 5000 lb.
preload is 657 MPa, which gives a safety factor of 2.15 to the yield stress of the housing material
(PH 13-8 Mo, H950). At 25kG (and at -20°C with 5000 lb. preload), the maximum Von Mises
stress in the housing increases to 849 MPa, and correspondingly reduces the safety factor to 1.67.
With these boundary condition assumptions, the housing is not expected to yield.

Table 4: FEA Results for AE Recorder Housing.
State Max Von Mises Safety Factor*

-20C with 5000 lb. Preload 657 MPa (95.3 ksi) 2.15
During 25kG, 0.5ms Pulse 849 MPa (126 ksi) 1.67

* Safety Factor based on minimum yield strength of PH 13-8 Mo in condition H950 – 1415 MPa (205 ksi), per
ASTM A564.

Figure 7. Housing Von Mises Stress State at 25kG Peak
(Full Symmetry Shown.

 21

The FEA results for the potting are listed in Table 5. A contour plot of the maximum principal
stress in the potting at 25kG peak acceleration is shown in Figure 8. The peak maximum
principal stress in the potting is seen at the corners of the windows where the potting interfaces
with the housing. The peak maximum principal stress at -20°C and with the 5000 lb. preload is
53 MPa, which gives a safety factor of 1.32 to the yield stress at room temperature of the potting
material (828/DEA/GMB). At 25kG the peak maximum principal stress in the potting increases
to 68 MPa, and correspondingly reduces the safety factor to 1.03. While the peak stress is high
and may indicate that adhesive failure will occur at the interface of the housing and the potting in
the corner of the window, this location is away from the electronics and is not expected to affect
the performance of the recorder. In fact, the stress state near the electronics is very low.

Table 5: FEA Results for AE Recorder 828/DEA/GMB Potting.
State Max, Max Principal Stress Safety Factor*

-20C with 5000 lb. Preload 53 MPa (7.69 ksi) 1.32
During 25kG, 0.5ms Pulse 68 MPa (9.86 ksi) 1.03

* Safety Factor based on yield strength of 828/DEA/GMB – 70 MPa (10 ksi).

Figure 8. 828/DEA/GMB Potting Maximum Principal Stress State at 25kG Peak
(Half symmetry shown.)

One item of interest is the capattery housing. The equivalent plastic strain of the capattery
housing at -20C with the 5000 lb. preload applied is shown in Figure 9. As shown, the housing
walls permanently deform outward due to the shrinkage in the potting material as the assembly
cools from the elevated cure temperature down to the lowest operational temperature. During
the 25kG peak, the equivalent plastic strain increases slightly from 0.04% to 0.05%. While these
strains do not indicate that the housing itself is going to fail, the housing is expected to maintain
electrical contact with the capattery core during operation, and therefore these plastic strains
could cause the capattery to fail open. This same issue has been observed in other recorder
designs (3DDR-AM and 3AMP); the solution has been to order special capatteries from AVX
that contain conductive epoxy between the capattery core and the housing. For more information
see Reference (3).

22

Figure 9. Capattery Housing Equivalent Plastic Strain at -20C with 5000 lb. Preload (Half
symmetry shown at 10x displacement magnification.)

In conclusion, the FEA of the AE Recorder does not reveal any significant mechanical design
flaws. The analysis was conservative in that it was performed at the lowest operational
temperature and included loads and boundary conditions to account for the entire lifecycle of the
product. The results illustrate the importance of including the manufacturing process in the
analysis, as the residual stresses due to the cure schedule account for a significant portion of the
final stress state in the AE Recorder.

Encapsulation
Research that modeled encapsulation systems over temperature and during shock revealed
weaknesses in our formerly standard polysulfide rubber conformal coat / Hysol approach (6).
Essentially, the conformal coat was ineffective in reducing thermally-induced stresses created
during the 70°C epoxy cure cycle, and was dropped completely. The AE Recorder encapsulant
scheme uses 828/DEA/GMB, plus component underfill using 828/D230, filled with 20% by
volume alumina. The formulation for 828/DEA/GMB is diglycidyl ether of bisphenol A (Epon
828, Resolution Chemicals) cured with 12 PHR diethanolamine (DEA, Fisher Scientific) and
filled with 48% by volume of Glass Micro-Balloons (D32/4500, 3M Corp.), cured at 70°C. PHR
is an abbreviation for parts per hundred resin, a ratio by weight. The glass transition temperature
Tg for 828/DEA/GMB is 81.4 ±1.6°C. The Glass Micro-Balloons part of the formulation helps
to block crack propagation and improve the coefficient of thermal expansion for the material.
Component underfill using 20% alumina-filled 828/D230 leads to higher fatigue life (7). A
high-velocity penetrator test series into hardened targets of the 3AMP penetrator data recorder
demonstrated the robustness of the encapsulation scheme.

Following underfill of all components using 20% alumina-filled 828/D230, we follow the
neutron generator encapsulation procedure SS2A0780. The 828/DEA/GMB is very viscous and
prone to voids. To compensate for this, the process uses an evacuation step typical of any
encapsulation process, but then adds curing under 80psi pressure. The pressure pot, which can
hold at most two AE Recorder mold fixtures, is placed in an oven with the following temperature
profile:

1. Hold the molds at 25°C ± 10°C for 2 hours minimum and 24 hours maximum.

 23

2. Raise the temperature linearly to 50°C ±6°C in 2 hours ±30 minutes.
3. Hold the cure temperature at 50°C ±6°C for 12 hours ±30 minutes.
4. Raise the temperature linearly to 71°C ±6°C in 5 hours ±30 minutes.
5. Hold the cure temperature at 71°C ±6°C for 5 hours ±30 minutes.
6. Ramp down to 25°C ±10°C in 30 minutes minimum and 24 hours maximum.

Pressure is held until after the pressure pot is returned to room temperature in the last step.

The mold fixture consists of two aluminum pieces that clamp together to hold the AE recorder
module (see Figure 10). The mold is filled with epoxy using the two sprue holes in the top of the
mold. At the completion of the cure process, the mold is separated using threaded holes and
screws to “jack” the two halves of the mold apart. Any excess potting from the sprue holes is
removed by turning the AE Recorder module on the lathe. The final encapsulated product can be
seen in Figure 11, and more details about the mold itself can be found in the mechanical
drawing: 3A5740D01.

Figure 10. AE Recorder Mold Fixture Assembly.

24

Figure 11. Encapsulated AE Recorder Modules.

ELECTRONICS DESIGN
Instrumentation on board test vehicles captures measurements used to support modeling and
simulation of the impact conditions. Modelers wish for large number of channels and extremely
high sample rates to support their analyses. Increasing sample rates are driven by interest in
isolating smaller, component-level interactions of the test article. Instrumentation design for
impact testing is a compromise among the number of channels, sample rates, power
consumption, volume of the design, and survivability.

In response to the functionality needs and the constraints of the mechanical packaging, the AE
Recorder design was parsed into three board types: Energy Storage & Power Conversion Power /
Interface board; Signal Conditioning Analog board; and Control, Digitization, and Memory
Digital board. The boards are linked with a common 6-wire bus containing 6V power and an
I2C control interface. Commands from the Digital board configure the Power / Interface and
Analog boards.

Energy Storage & Power Conversion
The instrumentation must be self-contained, without dependence on facility power. Batteries are
the obvious choice for power but large capacitance could also be used with energy transferred
before launch. The AE Recorder uses both a battery and a capacitor. High shock conditions at
impact limit the reliance on batteries because they cannot survive impact conditions consistently
even with shock-hardened packaging. But a battery is a convenient mechanism for charging a
robust, internal energy storage element. For the shock-tolerant capacitor, the AE Recorder uses

 25

an AVX BestCap capattery, also known as a double-layer capacitor or super-capacitor. The
capattery uses a rubber-like polymer loaded with electrolyte that allows formation of a double-
layer of ions. Because the separation distance between the ion layers is so small, very large
capacitance can be created in a relatively small volume. The name capattery derives from the
similarity to a battery with ion movement. However, the difference is the battery has a chemical
oxidation-reduction reaction to store energy, and the capattery does not.

Figure 12. Capattery Temperature Effects on ESR and Capacitance

One important capattery characteristic is increased Equivalent Series Resistance (ESR) from
0.16-Ohms typical and reduced capacitance with reduced temperature as shown in Figure 12. At
low temperature the increased series resistance produces a voltage drop when load is applied.
This compounded problem of higher internal resistance and reduced capacitance is partially
mitigated with switch-mode power conversion because the maximum energy is extracted from
the capattery. Batteries have a similar cold-temperature problem, so the AE Recorder cannot be
used much below -20°C.

Figure 13. Opened Capattery Shell with the Core Visible

The specific capattery in the AE Recorder design is the 16-V, 120-mF AVX BestCap
BZ12GA124ZAB (8) shown in Figure 13 slightly disassembled to reveal the internal
construction. The spot-weld bonds on the metal shell have been broken and the bottom shell,
polymer core, and top shell, respectively, are slid apart. External dimensions of the shell are

26

approximately 1.9” X 1.16” X 0.33” and the device weighs about 24 grams. This model
provides a higher energy density configuration than the standard AVX models. The design
volume available limited the AE Recorder to a single capattery although multiple capattery units
in parallel could improve reliability. According to the manufacturer a capattery is very unlikely
to fail shorted, but from experience on other designs a capattery can fail open. This vulnerability
is mitigated by a capattery special-ordered to use conductive epoxy between the core and the
shell.

Figure 14. Top Level 3A6999-002 Power / Interface Board

To maximize both the capattery energy extracted and the resulting recording time, a switch-mode
power converter (SMPC) steps down the 16V capattery voltage to 6V for distribution among the
circuit boards. The Linear Technology LTM8031 ultra-low noise buck converter operates at
about 85% efficiency with 16V input and 6V output. In addition to extending operating time on
the capattery, using a SMPC reduces heat dissipation by more than 50% down to 2.4W from
5.4W if only linear regulators were used. Minimizing power is also important for extending
battery life, and the SMPC allows a doubling of battery operating time. The hierarchical
schematic top-level diagram for the 3A6999-002 Power / Interface board is shown in Figure 14.

Vcap

I2C_IFACE1

Interf ace

I2C_SDA
I2C_SCLVcap

Latch_Pwr

Power_On SMPC_On

Vcap_Sig

I2C_Req_n

Vbat_Pwr Vbat_Sig

Latch_Pwr_Mon

CAPATTERY1

Capattery

Vbat_Pwr

Vext_Pwr

Latch_Pwr

Vcap

Vext_Pwr

I2C_Req_n

Vbat_PwrJ1-01
1

Vext_PwrJ1-02
1

ReturnJ1-05
1

Latch_Pwr_MonJ1-06
1

Vcap_MonJ1-07
1

Power_OnJ1-11
1

6V_Power PC1
1

Vext_Pwr
Vbat_Pwr

Latch_Pwr_Mon
Vcap_Mon
Power_On

Power_On

6V_Return PC2
1

Power & Control
Connections

I2C_SCL PC3
1

I2C_SDA PC4
1

I2C_Req_n PC5
1

I2C_Rtn PC6
1

I2C_SDA
I2C_SCL

Gnd An24
1

Vcap_Sig An22
1

Vbat_Sig An23
1

MDM-15 Pig-Tail Pins

Vbat_Pwr Vbat_Sig

Analog PCB
Connections

Vbat_Pwr

Latch_Pwr_Mon

R1
10.0k
SMR0402

Vcap

Latch_Pwr

SMPC_On

Latch_Pwr

SMPC1

SMPC

6V_PowerVcap

SMPC_On

Vcap_Sig

I2C_SCL

I2C_Req_n
I2C_SDA

6V_Power

SMPC_On

Vcap

 27

Figure 15. 3A6999-002 Power / Interface Board, Front and Back

The circuit board design as realized is shown in Figure 15. The capattery interface in the upper
left includes diodes to apply Vbat and Vext power sources and the current-limit circuit on the
Vbat input to clamp capattery in-rush current. All the external MDM-15 inputs have through-
hole mounting along the upper left corner. The upper right quadrant contains the microcontroller
and implements the “I2C_Iface” block in the top-level schematic from Figure 14. The
microcontroller qualifies the Power_On pulse, latching power only after the signal is present at
least 1 second, and enabling the SMPC. The lower third of the board contains the SMPC and
filter capacitors. Board interconnections are along the center, right edge of the board, labeled
“Power & Control Connections” in Figure 14. This bus is common to all five boards and
includes the 6V power from the LTM8031 buck converter and the I2C control signals sent by the
Smart Fusion microprocessor on the Digital board. The microprocessor processes the I2C
address to respond only when addressed.

Each of the other board types include their own linear regulators to drop the 6V SMPC output
that is bussed to all the boards to the voltages needed locally. Low-dropout regulators are used,
which is particularly important for the 5V circuit voltage on the signal conditioning board and
the 5V ADC supply on the digital board. For each of these linear regulators, we selected
tantalum filter capacitors to minimize piezoelectric effects. If standard X7R dielectric capacitors
were used, glitches could appear on the supply voltages at impact that would corrupt the
collected data.

The 3A6999 board includes operational amplifiers to condition the Vbat and Vcap signals for
measurement using the board’s own microcontroller and the 3A6998 Digital board’s FPGA.
Measuring Vcap shows sufficient supply voltage was available to produce the 6V distributed to
all the other boards and provides data validation. The battery voltage is useful for capturing
when the battery is lost during the test and can inform instrumentation decisions on future tests.

28

Inrush current charging the large capacitance of the capattery needs to be limited, so we used a
circuit that controls the gate voltage on a MOSFET based upon voltage across a current-sense
resistor. Rather than tolerate the high voltage drop and accompanying power loss associated
with driving the base-emitter voltage of a bipolar transistor with the sense resistor, we used a
Zetek ZDS1009 (9) complementary current-mirror device to sense a much lower voltage across a
smaller-value resistor as shown in Figure 16. Because the current-sense resistor can be a much
lower resistance, power dissipation is decreased and a physically smaller, lower power rating
resistor can be used resulting in smaller circuit volume. The permissible current is increased by
decreasing the value of resistor R3. Decreasing the sense resistor R2 value to increase the
current limit, as done in the classic circuit approach, would also work but is less flexible.

Figure 16. In-Rush Current Limit as Implemented Using a Current Mirror Circuit

The Microchip PIC24FJ64GB002 microcontroller has very limited functions on the board,
primarily to validate that the Power_On pulse is at least 1 second before latching power to the
capattery and then following an additional 8-second delay, to the Switch-Mode Power Converter.
It also handles the I2C bus commands from the Digital board, with the 3A6999 Power /Interface
board assigned address 0x10. Op Codes are shown in Table 6. Of particular importance is the
Op Code to power the AE Recorder off.

TP7
Pad
0-05X0-05_PAD

R3 Current Limit Settings
1.20k 1000mA
141 125mA
287 250mA
Current, mA =
0.8519(R, ohms) + 5.4109

C1
120mF
TH_BZ02
16V
BZ12GA124ZHB

1 2

3 4

D1
DFLS130L
POWERDI123

A C IA, 30V Diode with 80A surge

Latch_Pwr composed of 2
signals diode ORed: an
external signal with a
microcontroller output.

D2
SMCJ16A
DO-214AB

16V

VcapVext_Pwr

Vbat_Pwr

Q2
2N7002W

60V
SC70-3_EIAJ

3

1

2

Latch_Pwr

D10
DFLS130L
POWERDI123

A C

R3
287

SMR0603

R5
274k

SMR0402

R6
274k
SMR0402

TP5
Pad
0-05X0-05_PAD

R4
274k

SMR0402

TP4
Pad
0-05X0-05_PAD

Q1
IRF9310PbF
SO8_MS-012AA

5

4

1 8
2
3 6

7

R2
0.05
SMR0603
400mW

TP6
Pad
0-05X0-05_PAD

Current Limit
250mA

Latch_Gate

U1
ZDS1009
SOT223-8_ZDS

3 1
84

5 2
76 Y12X12

R32
274k

SMR0402

 29

Table 6. Power / Interface Board Configuration Op Codes
Op Code Bytes Function
Write, 0xAC 1 Latch power on
Write, 0x53 1 Unlatch power and turn system off
Read, 0x23 1 Report board power on cycles
Read, 0x25 1 Report number of times board has latched power
Read, 0x29 1 Report Vcap, capattery voltage
Read, 0x2B 1 Report Vbat, battery voltage
Read, 0x2D 1 Report temperature from MPC9701 sensor

Signal Conditioning
The AE Recorder is designed primarily to capture accelerometer data, the dominant sensor used
in impact tests. Not all of an accelerometer’s high-frequency signal content is useful, so must be
sufficiently attenuated at the sampling frequency by a low-pass filter to avoid aliasing. Generic
characteristics of ideal low-pass filter is shown in Figure 17. Aliasing, in which a high-
frequency component appears as a lower-frequency signal, creates distortions not correctable
with subsequent data processing. Accelerometer output frequencies are so high that amplifier
slew rate limitations will cause non-linear effects and distortion unless a passive RC-filter
precedes the first amplification stage. Because real-world filter implementations do not have
abrupt cut-off frequency characteristics (the mythical “brick wall” filter profile), the gradual
attenuation following the cut-off frequency must be accounted for in selecting the corner
frequency and the sample rate. Phase compensation was included in the AE Recorder filter to
avoid time correlation problems.

30

Figure 17. Generic 2-Pole Low-Pass Filter Characteristics

Typical full-scale output from Endevco Model 7270A piezoresistive accelerometers (10) is
+/-100mV when using a 5V excitation, and so requires at least 25V/V gain to match the +/-2.5V
input of the Analog-to-Digital Converter. Customers may use accelerometers that require higher
gains, and for this the AE Recorder has a maximum practical 320V/V gain. Because the filter
circuit is implemented as inverting, the accelerometer is connected inverted with the positive
Wheatstone bridge output tied to the inverting input of the instrumentation amplifier. In addition
to a passive RC filter ahead of the amplifier, the instrumentation amplifier also accommodates a
wide source resistance from the sensor without affecting filter performance. Model 7270A
accelerometers present a 650 ±300 Ohm load to the amplifier, but other types are in the 6k-Ohm
range.

The Analog board’s top-level hierarchical schematic is shown in Figure 18. The Microcontroller
section parses I2C commands from the Digital board and sends SPI commands to the
Programmable Gain devices and the Digital-to-Analog Converters. It also can shut down the
analog circuit linear regulator to minimize power in a Delay Arm mode. The DACs generate the
accelerometer balance voltages for each channel and the “fixed” 2.22V and 2.00V reference
voltages needed to center the resulting analog signal around 2.5V for maximum ADC range.

 31

Figure 18. Top-Level 3A7000-002 Analog Board Schematic

Instrumentation Amplifier and Programmable Amplifier
Each channel includes a passive RC filter, instrumentation amplifier, programmable gain stage,
and a filter section as shown in Figure 19. The circuit implements a 7-pole Phase-Compensated
Butterworth low-pass filter with a 50-kHz DC bandwidth and a -3dB point of 57 kHz. The
instrumentation amplifier’s very high input impedance supports insertion of a single, shunt-
capacitor pole preceding the first gain stage to attenuate high frequency signals that would
otherwise introduce non-linearity due to slew rate limitations in the instrumentation amplifier
(11; 12). The Analog Devices AD8224 instrumentation amplifier has a gain fixed at board
assembly time by Resistor R2. For test Impact 1, the resistor was not installed so the first-stage
gain was 1. For Crush 1, a 12.4k resistor is in place, setting the first-stage gain to about 5. The
AD8224 common mode voltage maximum is the supply voltage minus 2.0V. To maximize the
input range, the raw 6V supply powers the AD8224. Although the common mode range is not
an issue for accelerometers, expanding the range increases flexibility in applying the AE
Recorder to other sensors and inputs. The 49.9-Ohm resistor shown on the signal conditioning
output in Figure 19 is combined with a 100pF capacitor located on the Digital board before the
Texas Instruments ADS7265 Analog-to-Digital Converter. This 18 MHz pole is recommended
in the ADS7265 data sheet to accommodate the minimum 80ns acquisition time Tacq for the
device.

Discrete

Discrete

Disc_A
Disc_B

Disc_A_Out
Disc_B_Out

VdscB_Ref
VdscA_Ref

Ch3_Vbal

Ch2_Vbal

Ch4_Vbal

Ch1_Vbal

V2-222Ref
V2-000Ref

V2-222Ref
V2-000Ref

V2-000Ref
V2-222Ref

V2-222Ref
V2-000Ref

Ch2_Vbal

Ch4_Vbal

Ch1_Vbal

Ch3_Vbal

Ref _SYNCn

6V_Power

6V_Power

6V_Power

6V_Power

Ref _SYNCn

V2-222Ref

VdscA_Ref

V2-000Ref

VOLTAGEREG

VoltageReg

Ch2_Vbal

Ch3_Vbal

Ch4_Vbal

Din
Clk Ch1_Vbal

5V_ShutD_n

Bal_SYNCn

6V_Power
V2-222Ref

V2-000Ref

VdscA_Ref

VdscB_Ref

Ref _SYNCn

MICROCONTROLLER

Microcontroller

Clk
Dout

Ch2_CSn
Ch3_CSn
Ch4_CSn

Ch1_CSn

5V_ShutD_n

I2C_SCL
I2C_SDA Bal_SYNCn
I2C_Req_n Ref _SYNCn

Clk
Din

VdscB_Ref

Din
Clk

Din
Clk

Din
Clk

Bal_SYNCn

6V_Power

5V_ShutD_n

Clk
Din

Ch2_CSn

Ch4_CSn
Din
Clk

Ch1_CSn

Ch3_CSn

5V_ShutD_n

Bal_SYNCn

6V_Power

I2C_SDA
I2C_SCL

Analog PCB
Connections

I2C_Req_n

6V_PowerPC1
1

6V_ReturnPC2
1

I2C_SCLPC3
1

I2C_SDAPC4
1

I2C_Req_nPC5
1

I2C_RtnPC6
1

Gnd
1

Analog02
1

Analog03
1

Analog04
1

Analog01
1

Bilev el01
1

Bilev el02
1

Power & Control
Connections

JN06Sen_P3

JN08Sen_P4

JN01Excit

JN04Sen_P2

JN12Dsc_N1

JN15Dsc_N2

JN02Sen_P1

JN11Cont_A
JN10Return

JN05Sen_N2

JN07Sen_N3

JN09Sen_N4

JN13Dsc_P1
JN14Dsc_P2

JN03Sen_N1

CHANNEL_2

Channel

sig-
sig+

out

Clk
Din
CSn

Vbal
V2-000Ref
V2-222Ref

6V_Power

CHANNEL_3

Channel

sig-
sig+

out

Clk
Din
CSn

Vbal
V2-000Ref
V2-222Ref

6V_Power

CHANNEL_4

Channel

sig-
sig+

out

Clk
Din
CSn

Vbal
V2-000Ref
V2-222Ref

6V_Power

CHANNEL_1

Channel

sig-
sig+

out

Clk
Din
CSn

Vbal
V2-000Ref
V2-222Ref

6V_Power

Dsc_P2
Dsc_P1

+5V

Analog4

Analog2

Analog1

Analog3

Bilev el2
Bilev el1

Sen_P2

Sen_P1

Sen_P4

Sen_P3
Sen_N3

Sen_N2

Sen_N1

Sen_N4

Sen_P1

Sen_P2

Sen_P3

Sen_N1

Sen_N2

Sen_N4
Sen_P4

Sen_N3

MDM-15 Pig-Tail Pins

Dsc_P2
Dsc_P1

Ch1_CSn

Ch2_CSn

Ch3_CSn

Ch4_CSn

32

Figure 19. Signal Conditioning Per Channel

As input sensors change, the AE Recorder module must have adjustable gain to match. Also,
flexibility is needed to change gain in the field during test article build-up. A programmable
gain amplifier meets these requirements but is variable only in discrete increments. The Texas
Instruments PGA112, shown in Figure 19, has gain in binary increments from 1 to 128. When
combined with the rest of the fixed gain stages, gain from 6.25V/V to 800V/V is theoretically
possible. Noise limits the practical gain to 400V/V or less. Control of the PGA112 is through
the microprocessor’s SPI bus.

Low-Pass, Anti-Aliasing Filter
A low-pass filter is necessary to avoid aliasing high-frequency content onto lower frequency,
thus distorting the measurements collected. Switch-capacitor filters with sharp cut-off
characteristics are available but have been found to display piezoelectric effects when used in
high-shock instrumentation. The number of poles realizable using discrete amplifiers is limited,
as is the available board area. A design compromise resulted with a 7-pole Butterworth filter
that allows aliasing in the transition region between the Nyquist frequency and the sampling rate.

Figure 20. 57 KHz Phase-Compensated Butterworth Low-Pass Filter with -1.25 Gain

Output to ADC

Low-Pass Filter
Stage 2 thru 4
Gain=-1.25

V2-000Ref

V2-222Ref

Instrumentation Amplifier
Gain=4.984 w/ 12.4k
Gain=1 w/ openLow-Pass Filter

Stage 1
Q-Factor: 0.5

U3
PGA112AIDGST
MSOP10_MO-187-BA

Vcal/Ch0
3

Ch1
2

Vout
5

A
V

d
d

1

D
V

d
d

1
0

G
n
d

6
V

re
f

4

SCLK
7

DIO
8

CS*
9

Clk

6V_Power

Din

C2
0.015uF
SMC0603
C0G

C1
0.015uF
SMC0603
C0G

R1

8.87k
SMR0402

R4

8.87k
SMR0402

R2
12.4k
SMR0402DN

C3
150pF
SMC0402
C0G

Progammable Gain: 1-128 V/V (binary)
Interface: SPI

G=1+49.4k/Rg

U1A
AD8224BCPZ-R7

V
s
+

5
V

s
-

8

In+
4

In-
1

Rg+
3

Rg-
2

R
e
f

6

Out
15

T
h
V

s
+

1
7

FILTER1

Filter

OutVin

V2-000Ref

V2-222Ref

R3

49.9
SMR0402

+5V

CSn

out

Sen_N

Sen_P

Vbal

Offset Voltages:

V2-222Ref

Vin

Low-Pass Filter Stage 2
Q-Factor: 0.55
Gain: -2 V/V
GBW Req: 3.3 MHz

Low-Pass Filter Stage 4
Q-Factor: 2.25
Gain: -1.25 V/V
GBW Req: 16.875 MHz

Low-Pass Filter Stage 3
Q-Factor: 0.8
Gain: -2 V/V
GBW Req: 4.8 MHz

-

+

U7B
OP462HRUZ

5

6
7

-

+

U7C
OP462HRUZ

10

9
8

+

-

U7D
OP462HRUZ

12

13
14

Out

V2-000Ref

C18
1000pF
SMC0402
C0GR20

3.24k
SMR0402

R32
1.07k
SMR0402

C15
1000pF
SMC0402
C0G

R18
4.30k
SMR0402

R26

3.24k
SMR0402

R17

24.3k
SMR0402

R31

2.61k
SMR0402

R22

8.87k
SMR0402

C23
4700pF
SMC0603
C0G

R28
16.9k
SMR0402

C21
750pF
SMC0603
C0G

R29
11.3k
SMR0402

R21

12.1k
SMR0402

C22
1000pF
SMC0402
C0G

R19

16.9k
SMR0402

R24

5.62k
SMR0402

C20
360pF
SMC0603
C0G

R23

8.45k
SMR0402

R27
1.30k
SMR0402

R25

5.90k
SMR0402

C16
100pF
SMC0402
C0G

R30
3.40k
SMR0402

C19
100pF
SMC0402
C0G

R33
5.23k
SMR0402

C17
100pF
SMC0402
C0G

2-Pole, Phase Compensation Filter
Q: 1/sqrt(3)
Gain: 0.25 V/V = Q^2 / (1 + Q^2)

+5V

-

+

U7A
OP462HRUZ
TSSOP14_RU-14

3

2
1

4
11

 33

The phase compensated, Butterworth, MFB topology filter design was taken from the
3DDR-AM design (3) with few modifications and is shown in Figure 20. Note that the first pole
is implemented as a passive RC stage preceding the instrumentation amplifier as discussed
above. Analysis for the 3DDR-AM design ensured each amplifier had sufficient slew rate to
support the gain-bandwidth product needed for its stage. Total power for the Analog board,
excluding the microcontroller circuit and accelerometer excitation, is about 50mA at 6V. The
design’s 12-bit ADC requires 72dB attenuation at 200 kHz, which is the 250-kHz sampling rate
minus the 50 kHz highest non-aliased frequency desired by the customer. We defined the pass-
band as having less than 5% magnitude deviation and less than 5% phase nonlinearity. Thus, our
50-kHz pass-band was achieved with a 57-kHz -3dB corner frequency.

The AE Recorder has programmable gain to match accelerometer’s wide sensitivity variation.
Sensor balance must also be adjustable to compensate for accelerometer offset voltage. Two
16-bit Analog Devices AD5664 Digital-to-Analog Converters, shown in Figure 21, generate the
offset voltage needed for each of the four input channels. In addition, 2.00V and 2.22V
reference voltages were needed for all of the filter circuits, seen in Figure 20 as V2-000Ref and
V2-222Ref.

Figure 21. Digital-to-Analog Converters Adjust Balance and Threshold

+5V

Ch2_Vbal

Ch4_Vbal
Ch3_Vbal

Ch1_Vbal

VdscA_Ref
V2-000Ref

V2-222Ref
VdscB_Ref

Bal_SYNCn

+5V

U19
AD5664
LFCSP_WD_CP-10-9

VoutA
1

VoutB
2

VoutC
4

VoutD
5

G
N

D
3

SYNCn
6 Clk
7 Din
8 V

D
D

9

V
re

f
1

0
pa

d
1

1

Clk

Ref _SYNCn

Din

C70
0.015uF
SMC0603
C0G

C81
0.015uF
SMC0603
C0G

U17
AD5664
LFCSP_WD_CP-10-9

VoutA
1

VoutB
2

VoutC
4

VoutD
5

G
N

D
3

SYNCn
6 Clk
7 Din
8 V

D
D

9

V
re

f
10

pa
d

11

34

Comparator Circuit for Discrete Signal Capture
Two other DAC voltages adjust the thresholds for the two discrete channels. The threshold
should not exceed the 3.3V comparator supply voltage. This limit is enforced by the Digital
board processor. The discrete signal input is protected with an input resistor and a Zener diode,
as shown in Figure 22. The time constant of the RC filter is about 4 microseconds, selected to
approximate the AE Recorder sample period.

Figure 22. One of Two Discrete Channel Comparator Circuits

The discrete channel comparators are useful when events like contact closures are part of the
data collected. An analog channel needlessly uses the limited memory capacity when simple
fact-of-function data are all that is needed. As mentioned earlier, the threshold is programmable
to provide additional flexibility. However, because the 0V to 3V range is relatively restrictive,
external voltage dividers may be required to apply a signal within the comparator’s range.

Microcontroller Configures Analog Board
The AE Recorder design included an I2C bus shared among all boards to configure the Analog
and Power / Interface boards. A Microchip PIC24FJ64GB002 microcontroller (13) in a small,
28-pin QFN package accepts the I2C commands, qualifies them with the board address, and then
controls the programmable gain and digital-to-analog converters using an SPI bus. A TXS0108
level translator converts the 3.3V microcontroller signal output to the 5V signal levels needed for
the PGA112 programmable amplifier, as shown in Figure 23. Level translation is not needed for
the AD5664 DAC, but is applied to use the same SPI data and clock signals for all. The 2-mm
pitch, 5-pin programming connector has sufficient inter-pin spacing to be readily implemented
for the test fixture. The 0.05” pitch programming connector typically used is too closely spaced.

A higher I2C pull-up resistance of 11.3k allows all four boards sharing the bus to be connected in
parallel without over-loading the bus. The resistance was selected for convenience from among
the values used elsewhere in the design to reduce the bill of materials. The service request signal
I2C_Req_n was included in the event this feature was needed, and also uses a pull-up value from
elsewhere in the design.

D1
BZX84-C3V3
SOT23-3M_TO-236
3.3V

1
3

2

Disc_A_MonDisc_A

R95
12.1k
SMR0402

Disc_A_Out

+3.3V

U18A
MCP6562-E/MS
MSOP-8_MCP6562

OutA
1InA+

3

G
n

d
4

V
dd

8

InA-
2

VdscA_Ref

C72
360pF
SMC0603
C0G

 35

Figure 23. Analog Board Microprocessor Controls Gain and Balance

Op Codes sent from the Digital board using the I2C bus are listed in Table 1. The I2C data
following the address (board number) are interpreted to configure the PGA and DAC, or to
control the 5V analog power. The “Unlock Protected Parameters” command must precede the
serial number and board number commands. None of the values, including serial number and
board number, are written to the board are transferred to non-volatile memory until the “Write
Volatile Parameters” command. Because the PGA and DAC are both powered from the 5V
analog power, 5V power must have been enabled with the “Turn On 5V Power” command
before any settings to the PGA or DAC are accepted.

Table 7. Analog Board Configuration Op Codes
Op Code Bytes Function
0x01 3 Unique serial number, 16-bit
0x02 2 Board number: 0, 1, or 2
>= 0x10 and <= 0x17 3 DAC routine, 16-bit value
>= 0x20 and <= 0x23 2 PGA routine, 8-bit value
0xA1 1 Turn on 5V power
0xAE 1 Turn off 5V power
0xC5 1 Read volatile parameters from nonvolatile memory
0xCA 1 Write volatile parameters to nonvolatile memory
0xD3 3 Unlock protected parameters, Op Code and 0x55, 0xAA

Sensor excitation voltage shares the 5V analog power on the board, and each Analog board has
its own regulator. If a sensor draws too much current, the linear regulator will shut off which
cuts 5V power to the entire Analog board and measurements from all four channels will be lost.
Although 10V is still the default accelerometer calibration voltage, 5V is becoming more typical
and is commonly used on battery-powered systems to reduce power consumption.

C75
0.1uF
SMC0402
X7R

C74
0.1uF
SMC0402
X7R

C76
10uF
SMC0402
X5R
6.3V

Bal_SYNCnUse TP1, TP2 for
UART test points

PGA112 has Vih = 3.5V, so translator
needed. For AD5664 Vih is 2V, so could
have driven directly.

U12
TXS0108
VFQFN-20_RGY

A1
1 V

c
c
A

2

A2
3

A3
4

A4
5

A5
6

A6
7

A7
8

A8
9

OE
10

G
N

D
1
1

B8
12B7
13B6
14B5
15B4
16B3
17B2
18B1
20V

c
c
B

19

p
a
d

2
1

Vcore is 2.5V,
10uF required

C59
0.015uF
SMC0603
C0G

R85
11.3k
SMR0402

TP1Test_Point
TP2Test_Point

C82
0.1uF
SMC0402
X7R

Clk
Dout

Ch3_CSn
Ch2_CSn
Ch4_CSn

Ch1_CSn

Ref _SYNCn

5V_ShutD_n

U11
PIC24FJ64GB002
QFN-28_ML

PGED1/AN2/C2INB/DPH/RP0/PMD0/CN4/RB0
1

PGEC1/AN3/C2INA/DMH/RP1/PMD1/CN5/RB1
2

AN4/C1INB/DPLN/SDA2/RP2/PMD2/CN6/RB2
3AN5/C1INA/DMLN/RTCC/SCL2/RP3/PMWR/CN7/RB3
4

V
s
s
-1

5

OSCI/CLKI/C1IND/PMCS1/CN30/RA2
6OSCO/CLKO/PMA0/CN29/RA3
7C2IND/RP4/PMBE/CN1/RB4
8SCLKI/T1CK/C2INC/PMA1/CN0/RA4
9

V
dd

-1
1
0

TMS/CN27/RB5
11

V
B

U
S

1
2

TDI/RP7/PMD5/INT0/CN23/RB7
13TCK/SCL1/RP8/PMD4/CN22/RB8

14 TDO/SDA1/RP9/PMD3/RCV/CN21/RB9
15

D
is

V
R

e
g

1
6

Vcap/VddCore
17

PGED2/D+/VPIO/RP10/CN16/RB10
18PGEC2/D-/VMIO/RP11/CN15/RB11
19

V
U

S
B

2
0

AN11/C1INC/RP13/CN13/RB13
21

AN10/C3INB/VBUSON/RP14/CN12/RB14
22

AN9/C3INA/VBUSCHG/RP15/CN11/RB15
23

V
s
s
-2

2
4

V
dd

-2
2
5

MCLR
26

AN0/C3INC/VREF+/RP5/VBUSVLD/CN2/RA0
27

AN1/C3IND/VREF-/RP6/PMD6/CN3/RA1
28

V
s
s
P

a
d

2
9

PGC

Programming
connector

PGD

Vpp

P3
HEADER 5
TH_2MM_5

1
2
3
4
5

+3.3V+3.3V

Vpp

R102
11.3k
SMR0402

PGC
PGD

I2C_SCL

+3.3V

R101
11.3k
SMR0402

I2C_SDA

+3.3V

+5V+3.3V

+3.3V

I2C_Req_n

+3.3V

R100
24.3k
SMR0402

I2C_Req
Q1
2N7002W

60V
SC70-3_EIAJ

3

1

2

36

Control, Digitization, and Memory
The core measurement digitization and storage functions are contained in the 3A6998 Digital
board. All the analog outputs from both the 3A6999 Power / Interface and 3A7000 Analog
boards are connected here, and also the Analog board’s discrete signal comparator outputs. An
Actel Smart Fusion A2F500 Field-Programmable Gate Array (FPGA) orchestrates digitization
and data movement through a short, internal First-In, First-Out (FIFO) buffer and then into non-
volatile memory. The top-level diagram is shown in Figure 24, and the front and back of the
circuit board shown in Figure 25. (The patch on the board resulted from an error on the ground
plane Gerber file, and has been corrected in Version 003.)

Figure 24 Block Diagram for Digital Control

The Actel Smart Fusion combined FPGA logic with ARM Cortex M3 core microcontroller
reduces component count, board area, and design complexity. The microcontroller implements
the necessary supervisory control which handles the user interface, recorder configuration, and
the NAND Flash bad-block table. Aspects more efficiently handled with parallel logic include
control logic to drive the memory addresses and ADC timing pulses, plus sequencing the internal
FIFO buffering of ADC data acquired during NAND Flash programming time. The logic section
also handles the high-speed data extraction serial interface.

During Arm mode while data are being acquired and stored, the microcontroller periodically
monitors the quiescent value of all analog signals used to trigger the last phase of data capture.
Because accelerometers in particular are strongly influenced by small temperature changes, the
microcontroller updates the gradually-shifting quiescent reference levels used for the trigger
comparison and stored in the Sampling Controller while the system waits for the abrupt change
associated with the impact trigger. This patented automatic threshold (4) adjustment is
particularly important during long periods with the unit armed and waiting for trigger.

 37

Figure 25. 3A6998-002 Digital Board

On power up, the AE Recorder enters the “User” low-power mode with all the 5V analog power
and sensor excitation voltages off. A command over the external serial interface results in the
microcontroller sending I2C messages to each Analog board that turns on the 5V power and
initializes the gain (Programmable Gain Amplifier) and balance (Digital-to-Analog Converter)
devices. The user interface software has scripts that send a sequence of commands to adjust
balance on all the accelerometer channels.

Figure 26. Digital Board Hierarchical Top Level

3-3V5V

3-3V

3-3V

3-3V 5V

1-5V
1-5V

3-3V

Trig_Fidu_n

Memory

Memory

3-3V

ADC

ADC

AD_Clk

AD_WRn
AD_RDn
AD_CS0n

AD_Conv _n

ADC_Data[11:0]
5V

Analog[1:12]

AD_CS1n

3-3V
Analog[1:12]

Regulator

Regulator

6V_Power

5V

3-3V

1-5V

6V_Power

SmartFusion

SmartFusion

3-3V

I2C_SCL
I2C_SDA
I2C_Req_n

Trigd_Out

Data_Out_P

Data_Out_M

Cmd_Tx

Cmd_Rx

Arm_Ind_Raw

AD_Clk
AD_Conv _n

AD_WR_n
AD_RDn

AD_CS0n
AD_CS1n

ADC_Data[11:0]

Bilev el[1:6]

Xmit_Ena

Heart_Beat
Vcap_Sig
Vbat_Sig

Trig_Fidu_n

Sy nc_n

Trigd_Out

Data_Out_P

Cmd_Tx

Data_Out_M

Cmd_Rx

ArmInd_uP

AD_Conv _n
AD_Clk

AD_WRn
AD_RDn

AD_CS1n
AD_CS0n

AD_Clk

AD_WRn
AD_Conv _n

AD_CS1n
AD_CS0n
AD_RDn

3-3V

Q3
2N7002W

60V
SC70-3_EIAJ

3

1

2

Heart_Beat

ADC_Data[11:0]

I2C_SCL

I2C_Req_n
I2C_SDA

Bilev el[1:6]

S_Fusion_Power

SFusion_Power

1-5V

3-3V

I2C_SCL

6V_Power

Analog PCB
Connections

I2C_SDA

Bilev el6
Bilev el5

I2C_Req_n

6V_PowerPC1
1

6V_ReturnPC2
1

I2C_SCLPC3
1

I2C_SDAPC4
1

I2C_ReqPC5
1

I2C_RtnPC6
1

GndAn5
1

Analog01An1
1

Analog02An2
1

Analog03An3
1

Analog04An4
1

Analog05An8
1

Analog06An9
1

Analog07An10
1

Analog08An11
1

Analog09An15
1

Analog10An16
1

Analog11An17
1

Analog12An18
1

Analog2
Analog3

Analog1

Analog5

Analog4

Analog8
Analog7
Analog6

Analog10
Analog11

Analog9

Analog12

GndAn12
1

Bilev el01An6
1

Bilev el02An7
1

Bilev el03An13
1

Bilev el04An14
1

Bilev el05An20
1

Bilev el06An21
1

GndAn19
1

GndAn24
1

Bilev el3
Bilev el4

Bilev el2
Bilev el1

Vcap_SigAn22
1

Power & Control
Connections

Vbat_SigAn23
1 Vbat_Sig

Vcap_Sig

ADC_Data[11:0]

JN14 SerDes+

JN15 SerDes-

JN3 Cmd_Tx

JN4 Arm_Indicate

JN8 Cmd_Rx

MDM-15 Pig-Tail Pins

JN9 Return

JN10 Heart_Sy nc_n

JN12 Trig_Fidu_n

JN13 Xmit_Ena

Data_Out_P

OTrig_Fidu_n

Cmd_Tx

Data_Out_M

ArmInd_uP

Cmd_Rx

Arm_Indicate

R8
274k
SMR0402

R7
100
SMR0402

HrtSnc_n
R4 100

SMR0402

R6 100
SMR0402

R5 100
SMR0402

Heart_Beat

Xmit_Ena

OHeart_Sy nc_n

OXmit_Ena

Q1
2N7002W

60V
SC70-3_EIAJ

3

1

2

Trigd_Out

R3
274k
SMR0402

3-3V

Trig_Fidu_n

Q2
2N7002W

60V
SC70-3_EIAJ

3

1

2

HrtSnc_n

Xmit_Ena

Vbat_Sig
Vcap_Sig

38

The 3A6998 Digital schematic top level, shown in Figure 26, indicates all the connections off the
circuit board. The PC1 through PC6 connections in the upper left are the power and control bus
common to all the AE Recorder boards, with the Digital board the I2C bus master. Although
each of the other boards has an electrical connection for asserting the I2C_Req_n line, firmware
was not implemented nor a reason for implementing it.

On the right side of the schematic are JN3 through JN15, which are signals in the MDM-15S
harness split between the Digital board and the 3A6999 Power / Interface board. Connections on
the Digital board focus on the serial interface (Cmd_Tx, Cmd_Rx, SerDes+, SerDes-) and
special discrete signals (Arm_Indicate output, Heart_Sync_n input/output, Trig_Fidu_n
input/output, and Xmit_Ena output).

The remaining through-hole connections An1 through An24 include the analog and discrete
signals that mostly originate on the Analog board. Each of the three Analog boards produce four
analog signals and two discrete signals. The total of twelve analog signals are routed to the ADC
module shown in Figure 26. Dropping down the hierarchy into this block, the schematic section
shown in Figure 27 contains the digitizer details. Each of the analog input signals has a 100pF
filter capacitor, which when combined with the 49.9-Ohm resistor on the Analog board provides
a passive 18-MHz low-pass filter. All of the capacitors on analog portion of the Digital board
are either NPO or tantalum to minimize piezoelectric contamination of the analog signal. The
Smart Fusion logic drives all the control signals to acquire each pair of channels in sequence.

The primary criteria for analog input signal routing to the ADC was minimizing routing layers
and thus signal contamination. This meant the signals did not line up sequentially with channel
digitization, and also did not line up with the gain and balance devices on the Analog board.
These issues were compensated in the Smart Fusion microcontroller to map all of these to a
consistent index which is listed later in Table 9 and Table 10.

 39

Figure 27. Analog-to-Digital Converter Schematic

The Memory block from the Figure 26 hierarchy view is shown as schematic details in Figure
28. The ADC_Data bus from the ADC output is routed through the Smart Fusion fabric into the
NAND Flash and FRAM memory. Both memory types are needed to meet design requirements.
FRAM has an advantage recording the pre-trigger data because it can be rewritten quickly during
a possibly hours-long circular memory operation waiting for the brief pre-trigger recording, yet
is non-volatile. However, capturing the 5-seconds required recording time requires a much
larger memory: the NAND Flash. The small FIFO implemented in the FPGA is adequate to
buffer continuous data collection during the programming periods of the NAND Flash. Thus, the
FPGA can implement this function without additional external devices. Unfortunately, the FIFO
has insufficient capacity to handle all the pre-trigger data so the FRAM is still needed.

The Micron NAND Flash MT29F8G08ABABAWP-IT with 1.074x109 Bytes (14) has a 500us
worst-case write time for a 4096-byte block. This write time plus the transfer time to the Flash
internal buffer limit the maximum AE Recorder sampling rate. The block contains 204 of the
20-byte sample sets. The total recording time is thus 213.96 seconds. The microcontroller
maintains the Flash bad-block table and prepares the address for the next Flash block read during
data extraction or written during data acquisition. The memory interface takes the best
advantage of the FPGA by using parallel logic to efficiently handle data movement and internal
FIFO buffering, while relying on the microcontroller function to select the next valid block.

Required 470nF
minimum on RefOut

C16
0.1uF

X7R
16V

SMC0402

+
C14
33uF
SMC1206_P

6.3V
Tan

C13
0.01uF
SMC0603
NPO
25V

Busy 0

ADC_Data1
ADC_Data0

ADC_Data2
ADC_Data3

ADC_Data7
ADC_Data6
ADC_Data5
ADC_Data4

ADC_Data11
ADC_Data10
ADC_Data9
ADC_Data8

ADC_Data0

ADC_Data2
ADC_Data1

ADC_Data5
ADC_Data4
ADC_Data3

C6
0.1uF

X7R
16V

SMC0402

ADC_Data8
ADC_Data7
ADC_Data6

ADC_Data10
ADC_Data9

ADC_Data11

U1
ADS7865IPBSR
TQFP32

REFIn
1

REFOut
2

A
G

N
D

3
+

V
A

4

DB11
5DB10
6DB9
7DB8
8DB7
9DB6
10DB5
11DB4
12DB3
13DB2
14DB1
15DB0
16

Busy
17CONVST

18

Clock
19

CS
20

RD
21

WR
22

D
G

N
D

23
+V

D
2

4

CHB1+
25

CHB1-
26

CHB0+
27

CHB0-
28

CHA1-
29 CHA1+
30

CHA0-
31 CHA0+
32

AD_CS1n

+
C5
33uF
SMC1206_P

6.3V
Tan

TP1
Busy

C4
0.01uF
SMC0603
NPO
25V

+ C10
1uF

Tant
10V

SMC0603_P

Analog1

Analog3

Analog5

Analog6

Analog4

Analog2

Analog9

Analog7
Analog8

Analog11

Analog12

Analog10

C1
100pF

NP0
50V

SMC0402

U2
ADS7865IPBSR
TQFP32

REFIn
1

REFOut
2

A
G

N
D

3
+

V
A

4

DB11
5DB10
6DB9
7DB8
8DB7
9DB6
10DB5
11DB4
12DB3
13DB2
14DB1
15DB0
16

Busy
17CONVST

18

Clock
19

CS
20

RD
21

WR
22

D
G

N
D

23
+V

D
24

CHB1+
25

CHB1-
26

CHB0+
27

CHB0-
28

CHA1-
29 CHA1+
30

CHA0-
31 CHA0+
32

Busy 1 TP2
Busy

C2
100pF

NP0
50V

SMC0402
C3
100pF

NP0
50V

SMC0402

ADC_Ref 1

AD_Clk
AD_Conv _n

ADC_Ref 0

AD_RDn
AD_WRn

ADC_Data[11:0]

C7
100pF

NP0
50V

SMC0402
C8
100pF

NP0
50V

SMC0402
C9
100pF

NP0
50V

SMC0402

C11
100pF

NP0
50V

SMC0402
C12
100pF

NP0
50V

SMC0402
C15
100pF

NP0
50V

SMC0402

C17
100pF

NP0
50V

SMC0402
C18
100pF

NP0
50V

SMC0402
C19
100pF

NP0
50V

SMC0402

3-3V

5V

Analog12
Analog11
Analog10

Analog8
Analog7

Analog9

Analog4

Analog6
Analog5

AD_Clk
AD_Conv _n

AD_CS0n
AD_RDn
AD_WRn

Analog[1..12]

AD_CS1n

Analog2
Analog1

Analog3

+
C20
1uF

Tant
10V

SMC0603_P

5V

5V 3-3V

5V

5V

3-3V

3-3V

3-3V

3-3V5V

5V 5V

40

Measurements must be continually captured at precise time intervals without interruption. The
NAND Flash memory cannot accept a continuous stream of data during its addressing phase or
500-microsecond-long programming phase. All data destined for the NAND Flash pass through
the FIFO before being transferred to the Flash internal programming buffer. The FIFO memory
size is relatively small: only 4k bytes, equal to the size of one Flash write buffer. At 250k
samples per second, the AE Recorder captures 20 bytes of data every 4 microseconds, and the
FIFO holds 204 sample sets which corresponds to 816 microseconds.

Unless two NAND Flash chips are used in ping-pong fashion, the page programming speed
limits the maximum sampling rate. Other Flash devices list a 500us typical page-programming
interval, but have an unacceptably high maximum value and were therefore unable to keep up
with data storage rate. The average programming time per byte cannot be less than the
acquisition time per byte, which depends on the sample rate chosen. For a 250k samples per
second rate, the Flash chip must be able to store at least 5M bytes per second. The
MT29F8G08ABABA is able to store 4320 bytes in a maximum of about 675 us when using a 20
ns (50 MHz) clock, giving a satisfactory minimum input data rate of 6.4M bytes per second.
(Because Flash memory can have data reliability issues, a Reed-Solomon encoding scheme
creates error detection values stored in 86 of the extra 224 bytes beyond the normal 4096-byte
page. The Reed-Solomon is also used to generate error detection codes when transmitting the
data during data extraction. Both normal-speed and high-speed serial interfaces are included for
control and data extraction, respectively.)

FRAM, Ferroelectric Random Access Memory, is named for the ferroelectric phenomena,
although it is not actually affected by magnetic fields. FRAM is ideal for the pre-trigger buffer
because it is non-volatile, random-access, can be rewritten trillions of times, and has no need to
erase stored data before reusing its location. The Ramtron FM22L16 FRAM (15) is organized as
256k x 16 bit, which holds 26,214 of the 20-byte sample sets. At 250k samples per second, the
capacity is 105 milliseconds, however, the design is configured to store only 75ms pre-trigger
data, with the remaining capacity used to allow initial overlap between the FRAM-stored data
and the Flash data.

 41

Figure 28. NAND Flash and FRAM Memory Interface

The schematic details of the SmartFusion hierarchical block are shown in Figure 29, which
includes design blocks within the Smart Fusion FPGA and some external components such as the
oscillator U11 and discrete buffers. The Smart Fusion FPGA uses an internal Phase-Locked
Loop to generate 150 MHz using the Silicon Laboratories Si500S oscillator, programmed by the
component distributor (Digi-Key) to 20 MHz.

As an example of an FPGA block, the I2C / serial interface module depicted near the oscillator
allows the microcontroller in its supervisory control role to send configuration data to other
system boards using the I2C interface. This module also contains the SerDes high-speed serial
interface for rapid extraction, and the 115.2k Baud UART interface for external user control.

C23
0.1uF
SMC0402
X7R

C24
0.1uF
SMC0402
X7R

3-3V3-3V

3-3V

3-3V

3-3V

3-3V

FRAM_WEn
FRAM_CEn

FRAM_OEn

Flash_R_Bn

Data0
Data1
Data2

Data4
Data3

Data8
Data7
Data6
Data5

Data9
Data10

Data14
Data13
Data12
Data11

Data15

Data0

Data3
Data2
Data1

Data6
Data5
Data4

Data8
Data7

Data11
Data10
Data9

Data14
Data13
Data12

Data15
U12
FM22L16
TSOP44_MSO24GAC

A0
5

A1
4

A2
3

A3
2

A4
1

A5
44

A6
43

A7
42

A8
27

A9
26

A10
25

A11
24

A12
23

A13
22

A14
21

A15
20

A16
19

A17
18

D0
7

D1
8

D2
9

D3
10

D4
13

D5
14

D6
15

D7
16

D8
29

D9
30

D10
31

D11
32

D12
35

D13
36

D14
37

D15
38

V
d

d
11

G
n
d

12

CE
6

WE
17

OE
41

UB
40

LB
39

ZZ
28

G
n
d2

34
V

dd
2

33

Flash_R_Bn

FRAM_WEn
FRAM_CEn

FRAM_OEn

FRAM_SleepN

FRAM_SleepN

C21
0.1uF
SMC0402
X7R

C22
0.1uF
SMC0402
X7R

U4
MT29F8G08
TSOP48

R/B
7

RE
8

CE
9

V
c

c1
12

V
s

s1
13

CLE
16

ALE
17

WE
18

WP
19

I/O0
29

I/O1
30

I/O2
31

I/O3
32

V
s

s2
36

V
c

c2
37

I /O4
41

I/O5
42

I/O6
43

I/O7
44

nc1
1

nc2
2

nc3
3

nc4
4

nc5
5

nc
11

1
1

nc14
14

nc15
15

nc20
20

nc21
21

nc22
22

nc23
23

nc24
24

nc27
27

nc28
28

nc33
33

dn
u3

4
34

nc
35

35
dn

u3
8

38

dnu39
39

nc40
40

nc45
45

nc46
46

nc47
47

dnu48
48

nc6
6

nc
10

10

dnu25
25

dnu26
26

Flash
Interface
U3C
A2F500_256
256FBGA

Flash_WPn
D06

Flash_WEn
C16Flash_REn
C12

Flash_CLE
C09

Flash_CEn
D05

Flash_ALE
C11

Flash_IO_Bus0
F03

Flash_IO_Bus1
G04

Flash_IO_Bus2
H05

Flash_IO_Bus3
M02

Flash_IO_Bus4
B09

Flash_IO_Bus5
C05

Flash_IO_Bus6
C06

Flash_IO_Bus7
F01

Flash_R/B
L03

FRAM Interface
U3D
A2F500_256
256FBGA

FRAM_AddrBus00
D09

FRAM_AddrBus01
B10

FRAM_AddrBus02
B11

FRAM_AddrBus03
D14

FRAM_AddrBus04
E12

FRAM_AddrBus05
B12

FRAM_AddrBus06
D15

FRAM_AddrBus07
E01

FRAM_AddrBus08
D13

FRAM_AddrBus09
D11

FRAM_AddrBus10
E02

FRAM_AddrBus11
A14

FRAM_AddrBus12
E04

FRAM_AddrBus13
B13

FRAM_AddrBus14
B14

FRAM_AddrBus15
C14

FRAM_AddrBus16
C15

FRAM_AddrBus17
E14

FRAM_DataBus00
K02

FRAM_DataBus01
E16

FRAM_DataBus02
F05

FRAM_DataBus03
F12

FRAM_DataBus04
J03

FRAM_DataBus05
J02

FRAM_DataBus06
J01

FRAM_DataBus07
F14

FRAM_DataBus08
G01

FRAM_DataBus09
G03

FRAM_DataBus10
G02

FRAM_DataBus11
G05

FRAM_DataBus12
H02

FRAM_DataBus13
H04

FRAM_DataBus14
C01

FRAM_DataBus15
B01

FRAM_OEn
D10FRAM_WEn
L02FRAM_CEn
E15FRAM_SleepN
L12

A2
A1

A5
A4
A3

A7
A6

A10

A8
A9

A13
A12
A11

A15
A14

A0

A17
A16

A1
A0

A2
A3

A5
A4

A7
A6

A11
A10
A9
A8

A15
A14
A13
A12

A17
A16

42

Figure 29. Smart Fusion Discrete Signal and Serial Interface

Communicating with Recorders
The recorder unit primarily communicates using a 115.2k Baud serial link with 8 bits, no parity,
1 stop bit, no flow control. Any of several interface boxes can be used to connect to it, but a
QuickUSB interface is required to use SerDes data dump commands like F, G, and g. The
commands are listed in Appendix A – Alphabetical Command List, Appendix B – Command
List by Category, and Appendix C – Command Descriptions in Depth.

There are two potential operating modes for a recorder:

1. Controlled by a computer program, such as a graphical user interface (GUI)
2. Controlled by a human at a serial terminal

When a human is entering commands directly, it’s easier if the person can see what they’re
typing. They can make sure each command is correctly entered, and use backspace to correct
any mistakes. In this mode, the recorder echoes back every keypress it receives, as well as
sending the responses from commands.

However, when a computer program is in control, echoed characters are unnecessary overhead.
The program doesn’t need to know what it’s transmitted, only the response from the command.
In this mode, the recorder only sends responses.

ADC_Data[11:0]

I2C_SDA

Reset_n

JTAG_Sel

TMS
TDO
TDI

TRSTB
TCK

ADC_Data0
ADC_Data1

I2C_Req_n

ADC_Data2

Bilev el[1:6]

ADC_Data3

ADC_Data7
ADC_Data6
ADC_Data5
ADC_Data4

ADC_Data10
ADC_Data9
ADC_Data8

3-3V

3-3V

3-3V

3-3V

3-3V 3-3V

3-3V

3-3V

I2C_SCL
Data_Out_P

Data_Out_M

Xmit_Ena

Arm_Ind_Raw

Heart_Beat

Trigd_Out

AD_Clk
AD_Conv _n

AD_CS1n

AD_RDn
AD_WR_n
AD_CS0n

ADC_Data11

UART, HS Serial,
I2C Interface

U3F
A2F500_256
256FBGA

I2C_0_SCL
J12

I2C_0_SDA
J13 Serial_Out

B06

UART_0_RXD
K12UART_0_TXD
K16I2C_Req

K15
Tx_3-3V
Rx_3-3V

Rx_3-3V

Error +/-250ppm maximum, 0 to 85C

U11

Si500S_20MHz
RESON_3-2X4MM

OE
1

GND
2 Out

3V
dd

4 20.00MHz

TP3
uCLK

uCLK

U15
74LVC1G17

SC70-5_DCK

4 2

5
31

3-3V

External ADC Interface

DB0

DB11

U3B
A2F500_256
256FBGA

ADC_Clock
A03

ADC_CONVSTn
A04

ADC_IO_Bus03
D08

ADC_IO_Bus04
A13

ADC_IO_Bus05
B03

ADC_IO_Bus06
B04

ADC_CS0n
A06

ADC_RDn
M01

ADC_WRn
D07

ADC_CS1n
L04

ADC_IO_Bus00
A07

ADC_IO_Bus01
A10

ADC_IO_Bus02
A11

ADC_IO_Bus07
B05

ADC_IO_Bus08
C08

ADC_IO_Bus09
B07

ADC_IO_Bus10
B08

ADC_IO_Bus11
C03

JTAG,
Clock,
Reset
Interface

U3E
A2F500_256
256FBGA

V
_J

T
A

G
H

1
2

TRSTB
G13

TMS
G14

TCK
G15

TDO
H13 TDI
H14

JTAG_Sel
H15

Reset_n
K04

Clk_A
E03 Triggered

K01

Arm_Indicate
N01

V
p

p
G

1
2

Heart_Beat
N16

Xmit_Ena
J16

Vbat_Sig

Vcap_Sig

Built-In Analog
U3G
A2F500_256
256FBGA

V
A

R
E

F
0

T
0

6

V
A

R
E

F
1

T
0

9

VAREFOUT
N12

ABPS0
R03

ABPS1
T02

ABPS2
R05

ABPS3
N05

ABPS4
R11

ABPS5
T11

ABPS6
T10

ABPS7
R10

ADC0
T05

ADC1
R06

ADC2
P07

ADC3
M05

ADC4
M09

ADC5
N09

ADC6
P09

ADC7
R09

CM0
T03

CM1
P06

CM2
M12

CM3
N10

TM0
R04

TM1
N06

TM2
M11

TM3
P10

TMS
TDO

TRSTB

TCK
TDI

3-3V

P5
Recept-8-StrTh
TH_2MM_8

1
2
3
4
5
6
7
8

Inputs accept
voltages to 5.5V

Inputs accept
voltages to 5.5V

Cmd_Rx

R2
274k
SMR0402

R1
274k
SMR0402

U13
74LVC1G17
SC70-5_DCK

42

5
3 1

Cmd_Tx
Tx_3-3V

U9
SN65LVDS1DBVR
SOT23-5_DBV

V
c

c
1

G
n

d
2

D
5 Y

4

Z
3

3-3V

U16
74LVC1G17
SC70-5_DCK

42

5
3 1

3-3V
U14
74LVC1G17
SC70-5_DCK

42

5
3 1

3-3V

C64
0.1uF
SMC0402
X7R

Trig_Fidu_n

Sy nc_n

Bilev el1

Bilev el3
Bilev el2

Bilev el4
Bilev el5
Bilev el6

uCLK

 43

The recorder starts up in program-controlled mode, with input echoing off. To change modes,
use command “?” to switch to human-controlled mode (and print a list of available commands),
and command “/” to switch to program-controlled mode. It doesn’t hurt anything to switch to
the mode the unit is already in, and in fact it’s expected that a user will use command “?” to get a
list of commands while already in human-controlled mode.

Having a recorder in human-controlled mode when actually a program is in control will lead to
strange results as the program tries to parse the echoed command as if it were a response, so
always end with command “/” when you’re done entering commands manually.

Although backspace works, the arrow keys don’t. If a command must be edited, backspace is the
only tool available. Also, there is no command history other than the screen buffer of your
terminal program.

Issuing Commands
Each recorder unit needs to be issued an individual address, so that commands can be sent
specifically to that recorder when it’s in a multi-recorder system. An address is the first
character sent following a newline (i.e. a press of the enter key, a transmission of ‘\n’ from a
program). A recorder will disregard any command not addressed to it.

For example, to send command C to a unit with address ‘1’, type:
1C<enter>
Only the unit with address ‘1’ will reply, with the response K (or !, if command C isn’t allowed
right now); if another unit with address ‘2’ is listening on the same serial connection, it will
ignore the command.

However, if you want to send command C to all units, use the special address ‘0’:
0C<enter>
No units will reply (to prevent contention at the serial multiplexer), but all units will accept the
command. However, depending on the units’ states, the command might not have an effect for
all of them; for C, it depends on whether or not they’re armed. Be sure that all units are prepared
to accept a particular command before you send it to all units, as you will receive no feedback if
there’s an error. Optionally, after issuing a command to all units, you can use individually-
addressed diagnostic commands to see if the command was successful on each unit.

(In this context, for a unit to “reply” means to send a response back through a multi-recorder
system containing a serial multiplexer. This involves the recorder not only transmitting a
response on its serial output, but asserting its Xmit_Enable output to put that response on the
output of the serial multiplexer. Every recorder will transmit a response on its serial output when
it receives a command addressed to it (even with address ‘0’), but it won’t assert its Xmit_Enable
output unless specifically addressed – if multiple units asserted Xmit_Enable at once, there
would be a conflict on the output of the serial multiplexer. One side effect of this two-signal
system is that it’s easier to debug a unit’s behavior, as a unit’s responses are always available
from its serial port.)

44

Finally, it’s possible to configure a unit to not
have an address (see the in-depth description of
command +). Such a unit will always act as if its
address character has already been received. For
example, to issue it the command C, simply send:

C

The unit will not reply to any command.
Naturally this is only for single-unit debug and
testing purposes, as a direct serial connection to
the unit will be required to read the unit’s
responses; a serial multiplexer will never pass the messages along.

Argument Parsing Principles

 Field types are fixed. If a field requires a decimal value, you can’t enter 0x10 if you want
sixteen; enter 16.

 Hexadecimal fields don’t require any prefix or suffix. If the field description says that a

hexadecimal value is required, just enter the hex digits, e.g. c56 for 0xc56. Letter case doesn’t
matter to hex values, so C56 works just as well.

 String fields are always at the end of a command, and may include any characters except
newlines and backspaces. They are terminated by a newline (i.e. by reaching the end of the
command) or by reaching the maximum length for the field (generally 32 characters).

 Fields that aren’t string fields are terminated by a space character, by an invalid character (i.e.
one that doesn’t match the field type), or by reaching the maximum length, which is given in the
field description.

o Example 1: If a command requires a hexadecimal value, an argument of 0x12 will be
parsed as a zero followed by an invalid character, and interpreted as “0”, while x12 is
kept to be used as the next argument (if one exists).

o Example 2: If a command requiring a decimal value is given an argument of 12ac, it will
be interpreted as “12”, as “a” is not a valid decimal character; ac would be used for the
next argument.

 Any number of spaces between arguments is valid, but tabs and other whitespace are not
allowed. It’s even legal to have zero spaces between arguments, but that’s likely to have
unexpected results unless you’re very careful to make every argument the exact maximum
length.

 Leading zeros are not necessary for decimal and hexadecimal arguments, but they are not
ignored.

o Example 3: If the command requires two argument fields of three bytes each, giving it 0
23 will be interpreted as “000000 000023” but 00000000 23 will be interpreted as
“000000 000000” and the “23” will be dropped. The first 6 zeros will make up the three
bytes of the first field (terminated by maximum length), the next two zeros will make up
the second field (terminated by the space), and the command doesn’t have any more
fields for the “23” to go into.

Serial_In_1

Serial_In_2

Serial_Out_1

Serial_Out_2

Xmit_Enable_1

Xmit_Enable_2

PC Serial_In

PC Serial_Out

Serial Multiplexer – Simplified Schematic

 45

 If extra arguments are given to a command, they are ignored. If not enough arguments are
provided to a command, the response will indicate an error.

 If an argument is out of range, the response will indicate an error.

Command Responses
Each command has a response format given in the list of command descriptions. The response
format shown in the list is the format of a successful response; in many cases, a successful
response will be simply “K”.

An unsuccessful (error) response will start and end with “!”; usually this takes the form of a
simple single “!”, but more complicated messages such as “! 00000005 3 2066 !” are possible for
a few commands. (These messages explain exactly where in the firmware the error occurred,
and are generally useful only to the developers.)

All responses are a single line, i.e. zero or more characters followed by a carriage return and
linefeed (in C syntax, "\r\n"). (Empty lines are possible only for command i; other commands
will always return at least one character before the newline.)

Hexadecimal fields in a response can have leading zeros, but decimal response fields won’t.

User-defined strings, i.e. the arm string and unit description string, have a fixed length of 32. If a
string provided by the user is less than 32 bytes long, the string will be padded when it appears in
a response. The pad bytes will be null characters (bytes of value 0x00), which makes printing
such responses slightly tricky, as using printf("%s") will end the printing when the nulls start;
fwrite() is one way to make sure that all the characters get printed.

The debug menu command, command J, contains exceptions to most of these rules.

Retrieving Data
Recorded data can be downloaded from the recorder either via low-speed serial (the same link
used for commands) or high-speed SerDes. Making a SerDes connection requires a particular
type of interface box, containing a QuickUSB chip.

SerDes is about a thousand times faster than low-speed serial when data is being moved, but this
doesn’t include the time spent issuing commands or decoding and storing the received data. To
increase dump speed, reduce overhead by requesting many pages at once over SerDes, for
example 256, 512, or 1024 pages per command.

Operating Modes
The recorder has several operating modes, which affect (among other things) the commands the
unit will accept. All modes except Recording can be cancelled with command f, which returns
the unit to User or Locked mode. The current mode is given by commands s and W.

46

Table 8. AE Recorder Operating Modes

Mode (cmd s)
Submode
(cmd W)

Description

USER

U User – The unit isn’t doing anything. This is the default mode.

L
Locked – The unit’s memory contains recorded data; to protect it, all
commands that change the contents of memory are locked out (i.e.
will return an error) until command E is issued.

D

Delay‐Arm – The unit is in a low‐power state with signal amplifiers
and accelerometers off, counting down a timer until it switches to
Warmup mode. Command d gives the remaining time. Command S
will return bad values for analog inputs and bilevel inputs in this state.

ARM_FIRST

W

Warmup – The accelerometers have been turned on and are warming
up. Trigger events are ignored. Command l can set how long this
lasts. Command d gives the remaining time until the unit switches to
Arm‐First mode.

F
Arm‐First – The unit is now truly armed and is storing pre‐trigger data
to FRAM. Any trigger event will begin Recording.

RECORDING R

Recording – The unit has been triggered. Data is being stored to
flash. How much data will be stored is set by command n.

When recording is complete, the next mode depends on whether
multi‐trigger is enabled (command t); the next mode will be Arm‐
Again if multi‐trigger is enabled, Power‐down otherwise.

If flash memory becomes completely filled, the unit will go to Power‐
down mode immediately.

This is the only mode that cannot be force‐exited with command f;
only command R can stop this mode before it’s finished.

ARM_AGAIN A

Arm‐Again – The unit is waiting for another trigger. When a trigger
event occurs, the unit will enter Recording mode.

Unlike Arm‐First, no data is stored to FRAM while the unit is in this
state.

POWER‐
DOWN

P

Power‐down – The unit is finished recording. When the unit enters
this state, it can optionally turn itself off; this is controlled by
command ;. If the unit does not turn itself off, it will not stay in this
mode but will enter User mode.

Others O
Other modes exist, but they are for short operations performed by
some commands, which end before another command can be run.
The only modes that should be seen by the user are listed above.

Recorder Configuration
The recorder contains two sets of configurations: one in RAM, and one in nonvolatile memory.

 47

Figure 30. Recorder Configurations Diagram

The configuration in RAM is the current, active one, controlling what the recorder does; it is lost
when the recorder is reset or turned off. The configuration in nonvolatile memory is a backup; it
is copied to RAM when the recorder is reset or turned on.

Command X is used to move configuration data between RAM and nonvolatile memory. With a
nonzero argument, it will save the current configuration. With an argument of zero, it will
restore the saved configuration, overwriting the current configuration.

Resetting the recorder with command R will also reload most settings from nonvolatile memory.
The exceptions are the settings stored on analog boards, controlled by commands V, Y, y, and Z.

Many commands change part of the recorder’s configuration. Some of these commands save
their changes to nonvolatile memory immediately, but other commands only store their changes
in RAM. The difference is that some commands’ settings might be changed a lot before the user
decides on a good value; these commands are designed to only affect RAM. Once a good value
is found, it can be saved to nonvolatile memory. Other commands, meanwhile, aren’t used often
and aren’t useful for experimentation; these commands save their changes immediately.

Recording Data, Arming, and Triggering
At the very least, the following must be done for a successful data-recording session:

1. Unlock write access to the flash: E
2. Clear the existing data from the flash: b
3. Optional: Set the length of the recording period: n <pagesPerTrigger>
4. Arm the unit: A [armString] or D <delaySeconds> [armString]
5. Recording will begin when the unit is triggered, either manually via command C or due to a

trigger condition being satisfied by an input

When an arming command is sent to a recorder, there are several periods of time that must pass
before it is ready to be triggered and store data:

1. Delay‐Arm (only if arming happens using arm‐on‐power‐up or command D)
2. Warmup (length is controlled with command l)

Only when the Warmup period is complete will the unit respond to triggers, either input-based or
caused manually with command C.

Triggering on a given input channel requires:

48

 The unit is in an armed state (Arm‐First or Arm‐Again) (check with W)

 The input channel is enabled as a trigger source (set with M)

 At least one of the channel’s two thresholds is enabled (set with m)

 An enabled threshold must be satisfied for the minimum number of consecutive records (set

with q)
A threshold being satisfied means, for an analog channel, that the measured value is less than the
low threshold (quiescent value – offset) or greater than the high threshold (quiescent value +
offset). Threshold offset is set with command o. (A measured value equal to the threshold does
not satisfy it, so a sufficiently large offset makes a threshold impossible to satisfy.) For a digital
channel, the low threshold is satisfied by a low value and the high threshold is satisfied by a high
value; the cutoff voltage between “low” and “high” values is set with command Z.

Channel Indexing
Most commands that take a channel as an argument require a channel index. The inputs are
assigned to channel indices in the following way. (The ordering of the analog input indices is
due to the order in which the channel inputs are wired to the ADC chips.)

Table 9. Analog Channel Indexing
Channel Type Input Channel index

Analog

Analog1 5

Analog2 4

Analog3 3

Analog4 1

Analog5 2

Analog6 0

Analog7 11

Analog8 10

Analog9 9

Analog10 7

Analog11 8

Analog12 6

Digital

Bilevel1 12

Bilevel2 13

Bilevel3 14

Bilevel4 15

Bilevel5 16

Bilevel6 17

Fiducial digital
Fiducial7 (Heart_Sync_n) 18

Fiducial8 (Trig_Fidu_n) 19

Manual trigger C command 20

For convenience, a table of just the analog inputs from the above table, sorted by channel index:

 49

Table 10. Analog Input Sorted by Channel Index

Channel index 0 1 2 3 4 5 6 7 8 9 10 11

Analog input 6 4 5 3 2 1 12 10 11 9 8 7

Time Reporting
The time base of the recorder when storing data is based on the rate at which records are taken.
Each record requires a minimum of 167 processor cycles to acquire and store; an additional
number of cycles can be added to that to produce a variable recording rate. The clock rate of the
main processor is 50 MHz, so the default number of additional cycles is 33, to store 250,000
samples per second; at 0 additional cycles, the recorder can theoretically store about 299,400
samples per second, but this mode has not been rigorously tested. The number of additional
cycles can be read and written with command Q.

Time is measured by the recorder in units of records, to which an FRAM address can be directly
translated; since the FRAM is filled in about 0.1 seconds, a larger scale timer is also needed.
Much like the hour and minute hands on a clock, the wraparound counter (aka “loops” counter)
increments each time the FRAM write location reaches the end of FRAM and wraps around.

The duration since arm for a given FRAM address and wraparound count is:
(floor((FRAM address [17..3]*8+7)/10)
 + 26214 * FRAM wraparound count [19..0]) records
 * 20 ns/cycle * (167 cycles/record + betweenRecordDelay)
Assuming the default betweenRecordDelay of 0x21, one record is sampled every 4000 ns.

Only some of the bits of the FRAM address are used in the equation above; this is because only
those bits are stored when a trigger happens. To use the equation with the output of command e,
use the position value the command returns in place of (FRAM address [17..3]*8+7) and
loops in place of FRAM wraparound count [19..0].

Firmware Version Notes
Firmware version 2014 and below
In these versions, command n only returns a single field, which is pagesPerTrigger. The
secondsPerTrigger field is not present.

Firmware version 2013 and below
In these versions, commands Y and y have a different type of channel selection field. For these
commands only, the first command field, channel, is not a channel index, but is instead the
externally-visible analog input number, minus one. That is, to refer to input AnalogN, the value
of channel should be N–1. For example, for a channel of 4, the selected input would be
Analog5. Also, the output of command s is much less detailed, containing fewer subfields.
Finally, flash-accessing commands such as _ and 3 can be invoked outside of USER mode,
which will cause the unit to change modes; this is a problem if the unit is armed at the time.

Firmware version 2012 and below
These versions lack the ~ command. The hardware they were designed for only had one fiducial
signal, Trig_Fidu_n, which was connected to both fiducial channels; the heartbeat signal was not

50

recorded. The two fiducial channels were only linked in terms of their input, so changing the
trigger configuration of one fiducial would not affect the trigger configuration of the other.

Firmware version 2011
This version has an S command with a different output order – the analog values are sorted by
external channel number (from analog1 to analog12), rather than by internal channel index (from
analog6 to analog7, see the Channel Indexing section). For backwards compatibility, issuing S
with a nonzero argument will sort the returned channel values in the same order as all other
firmware versions.

Also, the analog configuration values saved in eNVM are sorted by external channel number;
this causes saved configuration values to be used for different channels if changing versions
to/from version 2011, since the raw data in eNVM is not modified by version changes. This also
means that commands M, m, o, and q use the external channel number to determine analog
channel bit positions and channel selection.

Avoid using this firmware version if possible.

Firmware version 2008
This version has a bug in its SERDES flash dump function. If there are any bad blocks, the
wrong parts of flash will be skipped during dumping, and there will be some duplication of
pages. The low-speed serial flash dump command 3 works correctly, though it is rather slow;
using it to dump flash overnight or over the weekend may be preferable to manually undoing the
effects of the bug.

Avoid using this firmware version if possible.

Data Structure Definitions
The subsequent discussion of the FIFO and transfer of data into the Flash is clarified with a few
definitions of various structures used in this design and their sizes.

Record
20-byte structure. Usually contains one sample of all analog/digital input channels plus some
status flags, but may instead contain housekeeping data if multiple-trigger mode is enabled. See
the Data Records section for details.

Glob
12 records. Size is 240 bytes, the most records that fit into a single Reed-Solomon encoding
operation. (After encoding, the glob is 246 bytes long including the ECC bytes; if you’re reading
from flash or via SERDES, you’ll get 246-byte globs.)

 51

Table 11. NAND Flash Memory Glob Definition
Glob bytes Contents

0‐19 Record 0
20‐39 Record 1
40‐59 Record 2
60‐79 Record 3
80‐99 Record 4
100‐119 Record 5
120‐139 Record 6
140‐159 Record 7
160‐179 Record 8
180‐199 Record 9
200‐219 Record 10
220‐239 Record 11
240‐245
(optional)

Reed‐Solomon ECC (flash and/or SERDES only)

Chunk
204 records, i.e. 17 globs. This is the most records that fit into a single page, either FRAM (raw,
4080 bytes) or flash (after Reed-Solomon encoding, 4182 bytes). The SRAM holds one chunk.

Page
4096 bytes in FRAM, 4182 bytes in flash. (A flash page can hold up to 4320 bytes, but only the
first 4182 are used, as there’s not enough room for another glob.) The native about-4-kilobytes
unit for a given memory system, a page holds at least one chunk.

Pages are padded to a multiple of 256 bytes when sent over SERDES, for USB-related reasons.
FRAM pages are Reed-Solomon encoded before SERDES transmission; this involves padding to
the next glob boundary before being encoded, then padding to the next 256-byte boundary before
SERDES transmission.

Block
128 pages, about 512K. The FRAM holds one block.

Trigger housekeeping data
8 bytes of non-record data describing the circumstances of a trigger. They store the cause of the
trigger and the time after initial arming that the trigger occurred. The first trigger’s data is stored
in FRAM; subsequent triggers (if enabled) have their housekeeping data padded to the size of a
record for storage in flash.

Understanding Recorded Data

52

Table 12. Data Record Structure Organized in 1-Byte Increments
byte contents

0 analog input 6 [7..0]
1 analog input 12 [3..0], analog input 6 [11..8]

2 analog input 12 [11..4]
3 analog input 3 [7..0]
4 analog input 9 [3..0], analog input 3 [11..8]
5 analog input 9 [11..4]
6 analog input 4 [7..0]
7 analog input 10 [3..0], analog input 4 [11..8]
8 analog input 10 [11..4]
9 analog input 2 [7..0]
10 analog input 8 [3..0], analog input 2 [11..8]
11 analog input 8 [11..4]

12 analog input 5 [7..0]
13 analog input 11 [3..0], analog input 5 [11..8]
14 analog input 11 [11..4]
15 analog input 1 [7..0]
16 analog input 7 [3..0], analog input 1 [11..8]
17 analog input 7 [11..4]
18 status bits [7..0]
19 digital inputs [7..0]

Table 13. Data Record Structure Organized in 3-Byte Sequence
byte offset byte 2 [7..0] byte 1 [7..0] byte 0 [7..0]

0 analog input 12 [11..0] analog input 6 [11..0]
3 analog input 9 [11..0] analog input 3 [11..0]
6 analog input 10 [11..0] analog input 4 [11..0]

9 analog input 8 [11..0] analog input 2 [11..0]
12 analog input 11 [11..0] analog input 5 [11..0]
15 analog input 7 [11..0] analog input 1 [11..0]
18 ‐‐‐ digital inputs [7..0] status bits [7..0]

(The internal order of the analog inputs is different from the input numbers, due to the order in
which the channel inputs are wired to the ADC chips. This numbering is seen in the response
from the ‘S’ command, which orders the analog channels by internal index. The correspondence
is as follows.)

Sorted by analog input:
Analog input 1 2 3 4 5 6 7 8 9 10 11 12

Internal index 5 4 3 1 2 0 11 10 9 7 8 6

 53

Sorted by internal index:
Internal index 0 1 2 3 4 5 6 7 8 9 10 11

Analog input 6 4 5 3 2 1 12 10 11 9 8 7

Digital inputs definition
Bit 7: The “trigger detected” fiducial. If all recorders in a system have their OTrig_Fidu_n pins
connected to a common line, this fiducial is pulled low when any recorder is triggered. Even the
recorder that was triggered sees this low-going pulse, which lasts for just over 4 sample periods.
A lone recorder will see 4 consecutive zero values on this channel (starting immediately after the
triggering record), but in a multi-recorder system the interactions between recorders could cause
5 or more consecutive zero values to be present.
Bit 6: The “synchronization” fiducial. Pulled low by the Heart_Sync_n pin, which itself can be
optionally driven by a 1Hz heartbeat signal. In a multi-recorder system, connecting all the
recorders’ Heart_Sync_n pins to a common signal source (perhaps external) provides a data
alignment fiducial unrelated to trigger events.
Bits 5..0: Digital input channel values. Bit 0 is digital channel 1, etc.

Status bits definition
Bits 7..2: One fourth of the internal ADC data. Each group of four consecutive records contains
the full 24 bits of internal ADC data, 12 bits from each ADC.
Bit 1: PLL locked state (1=locked). If it’s unlocked, the system clock isn’t running at 50 MHz
anymore, and the timing and integrity of the record’s data is suspect. This should never happen.
Bit 0: Different meanings in FRAM and flash. In FRAM, it’s the FRAM seam detect bit
(differing values in consecutive records indicates where the FRAM stopped recording); in flash,
it’s an index bit for the internal ADC data (1 in the first of the group of four records, 0 in the
other three records).

Internal ADC data – part of the status bits
The internal ADCs (built into the SmartFusion), which measure battery and capattery voltages,
are slower than the external ADC chips, which measure the analog input channels. The internal
ADCs take data once every four recording periods. That data is then spread out over four
consecutive records. Which of the internal ADC data bits are stored in a given record is
determined by something we call a “record index”, which represents how many 6-bit half-values
have already been stored in the current 4-record group. The record index for a given record is
not stored anywhere; it must be determined from the contents of nearby memory (in flash) or the
record’s contents and address (in FRAM).

Internal ADC storage in flash
In flash, there’s no guaranteed connection between memory address and record index because
there might be housekeeping records present at lower addresses, which store a record’s worth of
data to flash without affecting the record index. This makes a separate indicator necessary,
namely status bit 0. In flash, status bit 0 is high only when the record index is 0, i.e. when a new
set of 4 records is beginning. This lets a reader start anywhere in flash and be able to start
reporting accurate internal ADC data within 7 records, by simply ignoring the internal ADC data
bits until a high status bit 0 is found and the record index is known. (Note that housekeeping
records also have the bit equivalent to status bit 0 set high, as part of their padding!)

54

Internal ADC data storage across consecutive records in flash:
Status bit 0 (in flash) Record index Status bits 7..2

1 0 Internal ADC 0 (Vcap) [11..6]
0 1 Internal ADC 0 (Vcap) [5..0]
0 2 Internal ADC 1 (Vbat) [11..6]
0 3 Internal ADC 1 (Vbat) [5..0]

Internal ADC storage in FRAM
In FRAM, the correspondence of the contents of status bits 7..2 to record index is the same, but
status bit 0 has a different meaning. Status bit 0 is generally constant from record to record,
changing its value only when recorded data reaches the end of FRAM and wraps around. Since
the number of records that fit in FRAM, 26214, is divisible by 2 but not by 4, record index in
FRAM can be directly determined from a record’s address and status bit 0. Specifically, record
index can be obtained by combining two bits of a record’s first FRAM address with the value of
status bit 0 using this algorithm:
record_index = FRAM_address[2..1] XOR (status_bit_0 << 1)

Table 14. Internal ADC Data Storage in FRAM across Consecutive Records
FRAM address Status bit 0 (FRAM) Record index Status bits 7..2

0bxx…xx000 0 0 Internal ADC 0 (Vcap) [11..6]
0bxx…xx010 0 1 Internal ADC 0 (Vcap) [5..0]
0bxx…xx100 0 2 Internal ADC 1 (Vbat) [11..6]
0bxx…xx110 0 3 Internal ADC 1 (Vbat) [5..0]
 … … …
0bxx…xx100 1 0 Internal ADC 0 (Vcap) [11..6]
0bxx…xx110 1 1 Internal ADC 0 (Vcap) [5..0]
0bxx…xx000 1 2 Internal ADC 1 (Vbat) [11..6]
0bxx…xx010 1 3 Internal ADC 1 (Vbat) [5..0]

Housekeeping Data (Trigger Descriptions)
The trigger source and trigger time are stored as trigger housekeeping data in FRAM for the first
trigger and in flash for all subsequent triggers.

Table 15. FRAM Addresses for Trigger and Housekeeping Data
address word contents

0x3fffc 0, FRAM address [17..3]
0x3fffd FRAM wraparound count [15..0]
0x3fffe Trigger origin [11..0], FRAM wraparound count [19..16]
0x3ffff 0000000, Trigger origin [20..12]

 55

Table 16. NAND Flash Pseudo-Record Structure for Trigger and Housekeeping Data
byte contents

0 0xfc
1 0x96

2 0x30
3 0x03
4 0x69
5 0xcf
6 FRAM address [10..3]
7 0, FRAM address [17..11]
8 FRAM wraparound count [7..0]
9 FRAM wraparound count [15..8]
10 Trigger origin [3..0], FRAM wraparound count [19..16]
11 Trigger origin [11..4]

12 Trigger origin [19..12]
13 0000000, Trigger origin [20]
14 0xfc
15 0x96
16 0x30
17 0x03
18 0x69
19 0xcf

Bytes 0-5 and 14-19 are constant padding, intended to be a distinctive marker of a housekeeping
record. Note that the equivalent of the status byte, byte 19, has bit 0 set; this bit is therefore not
an infallible indicator of record index 0 in flash. The possibility of a housekeeping record must
also be tested by seeing if the mentioned bytes possess the constant values defined above.

Trigger origin flag bits
The flag bits in the trigger origin bit vector correspond exactly to channel indices; see the
Channel Indexing section for more information, but the short version is:

Bits 0-11: analog channels index 0-11 (internal channel indexing, not external channel numbers)
Bits 12-17: bilevel (digital) channels 1-6
Bit 18: Heart_Sync_n fiducial digital channel
Bit 19: Trig_Fidu_n fiducial digital channel
Bit 20: force-trigger from microcontroller

If a bit is set, then the corresponding source caused the trigger event. It’s possible for multiple
bits to be set, indicating that multiple sources caused a trigger event simultaneously, but this
requires multiple trigger conditions to be satisfied by a single record.

56

Timekeeping Principles
Time elapsed since arming is derived from the FRAM address and FRAM wraparound count in
the following way:

Since the FRAM address increases by 10 for each record that is stored (a 20-byte record fits in
10 FRAM words), the lowest 3 bits of the FRAM address are unnecessary to uniquely determine
each record’s address. (The unknown three bits define an interval of 8 addresses. Only one
boundary between groups of 10 addresses can fit into that interval, maximum.) For a given
FRAM address A=0bxxxxxxxxxxxxxxx000, the number of records that begin prior to that
address is floor((A+7)/10). Because the time taken to store each record is defined by the
software (by adjusting the clock cycles of stall between sampling cycles), the FRAM address can
be converted into the time elapsed since the most recent write to FRAM address zero, serving as
a short-term clock. For this reason, the FRAM address counter is kept running, even when no
data is being stored to FRAM anymore.

Similarly, the FRAM wraparound count serves as a long-term clock. Given the number of
records that fit in the FRAM, the time taken for each wraparound can be easily derived, and the
number of wraparounds multiplied by that time to give the larger-scale offset from the very first
FRAM write. The number of records that fit in FRAM is floor((FRAM_BYTE_CAPACITY-
8)/20), or 26214 when using the Ramtron 22L16. Each wraparound thus takes time equal to
(user-defined record duration)*26214.

All told, the duration since arm for a given trigger housekeeping structure is:
(floor((FRAM address [17..3]*8+7)/10)
 + floor((FRAM_BYTE_CAPACITY-8)/20)*FRAM wraparound count [19..0])
 * (20 ns * (167 cycles + user-defined stall cycles setting))

Assuming the default stall cycles setting of 33, one record is sampled every 4000 ns.

FRAM Seam Discovery
The oldest record in FRAM will most likely not be at FRAM address zero. When interpreting
data from FRAM, therefore, the records will need to be shifted around such that the oldest record
comes first in the data. The address of the oldest record is called the seam address, because it’s
the point of division between two consecutive cycles through the FRAM circular buffer.

 57

The position of the “seam” in the FRAM circular buffer (where newest and oldest data are
adjacent) can be determined by monitoring status bit 0 in each record stored in FRAM. Status bit
0’s value is toggled every time the buffer wraps around; starting from the record at address zero,
the record in which the value of this bit changes from constant-x to constant-not-x is the record at
the seam address and the oldest record in FRAM. If all records have the same status bit 0 value,
then the seam address is zero and the first record is the oldest record.

The seam address can also be derived from the trigger time (which is an FRAM address) and the
overlap record count configuration:

(overlap records)*(10 FRAM addresses/record) + (stored trigger address) + 10 = (seam
address)

Since the lowest three bits of the trigger time address aren’t stored in housekeeping, the stored
trigger address needs to be rounded up to the next record boundary, i.e. the next multiple of 10.
Alternatively, round up the calculated seam address to the next multiple of 10. The reason for
the +10 is that the rest of the formula gives the address of the newest record; to get the address of
the oldest record, we must advance the address by one record’s worth of address space.

Understanding Configuration Data
The vast majority of the recorder’s configuration is stored in nonvolatile memory on the digital
board. This memory can be dumped with command 4, to provide a nearly-complete picture of
the recorder configuration on power-up. However, the recorder’s currently active configuration
may be different from the saved configuration data; multiple commands are needed to retrieve
the active configuration.

Active Configuration Data
The current configuration of the unit cannot be dumped in a single command. Multiple
commands are required to get a complete copy of the unit’s active configuration, and the
commands must be issued before the unit is reset or shut off, which will cause the current
configuration to be lost. The required commands are:

58

Table 17. AE Recorder Configuration Command List
e set/read FRAM position/loops (command 'S' modifies this if not armed or recording)

L set/read current data‐recording address in data memory (block and page)

l
set/read the current duration of the warmup delay, which happens prior to arm‐state
recording

M set/read trigger enables

m
set/read trigger threshold enables (both these and the trigger enables from command M
must be enabled to enable a trigger threshold)

N set/read overlap records (# of records stored in both FRAM and flash)

n set/read pages per trigger, max 0x40000 (204 records/page; 250k records/second normally)

o set/read trigger high/low offsets from quiescent

P set/read power state (from power board)

p
get data/voltages from power board (see power board docs; valid selections are 1=power‐
up count, 2=power enable count, 4=capattery voltage, 5=battery voltage, 6=temperature)

Q set/read between‐record delay (acquisition frequency = 50 MHz/(167+this))

q set/read trigger condition minimum durations

s get status ‐ current state, arming countdown, time spent waiting before last trigger, etc.

t set/read multi‐trigger enable

V set/read analog board reference/bias voltages

Y set/read analog channel offset values

y set/read analog channel gain values

Z set/read digital channel threshold voltage

; enable/disable automatic power‐off when recording is finished or end of flash is reached

~ enable/disable 1Hz heartbeat signal output

‐ get flash bad block list

Nonvolatile Configuration Data
There are five pages of 128-byte nonvolatile memory used to hold configuration data, each of
which contains a different category of data. Each page contains a single data structure, aligned
to the start of the page; all bytes between the end of the structure and the end of the page are
meaningless. For the sake of forwards compatibility, though, all 640 bytes across all five pages
are dumped by command 4.

When the configuration memory is dumped, all the configuration data it contains is visible,
though not very easy to read. Perhaps the best thing to do is to put the data back into the
structures in which it’s stored, using the following C code. It starts with the definitions of the
configuration data structures and ends with the code needed to interpret the dumped data in terms
of those data structures.

(Note that the processor in the recorder is little-endian; if you want to use this code on a big-
endian machine, reorder the bytes in the multi-byte fields accordingly.)

// eNVM types
typedef uint16_t temperature;
typedef uint8_t flag;
typedef uint16_t gain;

 59

typedef uint16_t offset;

// eNVM constants
#define ENVM_PAGE_SIZE 128
#define ARMSTRING_SIZE 32
#define UNITLABEL_SIZE 32
#define BADBLOCKS_MAXCOUNT 62
#define TRIGGERS_MAXCOUNT 63

// the structures contained in the eNVM pages

// stuff that should be set once then never change
typedef struct eNVM_consts {
 uint16_t badBlockScanHasHappened; // set to 0xbadb when the flash has been scanned for
bad blocks
 // bad blocks go here. How many can there be? Data sheet says 40 blocks/LUN max can be
invalid, and the chip contains 1 LUN.
 uint16_t badBlocks[BADBLOCKS_MAXCOUNT]; // 128 bytes/eNVM page, and the rest of the
struct uses 3 bytes; 125 remain. Divide by 2 to get 62 array entries.
 char unitAddress; // aka unit number. For a multi-recorder setup, determines what
address to listen to. First command byte is address.
} eNVM_consts;

// mostly for maincontrol
typedef struct eNVM_configuration {
 char unitLabel[UNITLABEL_SIZE];
 uint32_t serialNumber;

 uint32_t delayArmTimeOnStart_seconds; // this is for delay-arm-on-startup, not some sort
of default
 uint8_t armOnPower-up; // if this is set, we delay by warmupDelay seconds then ARM
immediately
 flag multipleRuns; // if this is set, allow multiple triggers
 uint16_t warmupDelay; // number of seconds to pause for accelerometer warmup in a pseudo-
arm state before actually saving data
 uint16_t sampleRate; // units of ksps; min 1, max 299.4 (if you want 300, 299.4 is an
error of -0.2%); for human use only
 uint16_t sampleDelayCycles; // cycles of delay between each record-taking; derived
directly from sample rate, and actually used by fabric blocks
 uint16_t postTriggerCollectTime; // units of seconds. Max is 214, so this is a somewhat
larger variable than necessary. For humans only.
 uint32_t postTriggerCollectPages; // directly corresponds to the value in mainCtl
 uint32_t overlapRecords; // how many records are stored in both FRAM and flash
 flag Power-downWhenDone; // whether to turn ourselves off when POWER-DOWN state is
reached (if not, goto USER state)
 char armOnPower-upString[ARMSTRING_SIZE]; // what armString gets set to when armOnPower-
up activates
 flag outputHeartbeat; // whether to toggle the heartbeat output or just leave it low
(such than an attached N-channel MOSFET doesn't conduct)
} eNVM_configuration;

typedef struct eNVM_triggerConfig {
 // the entries in these arrays are ordered by channel index
 uint16_t triggerLevel[NUM_ANALOG_CHANNELS]; // added/subtracted to quiescent measurement
to get high/low trigger thresholds
 uint16_t triggerWidth[NUM_ALL_CHANNELS]; // number of consecutive samples the input must
satisfy the trigger condition
 flag triggerEnables[NUM_ALL_CHANNELS]; // redundant with trigger directions, but user may
prefer ability to retain trigger configuration while disabled
 uint8_t triggerDirections[NUM_ALL_CHANNELS]; // high, low, both, or neither
} eNVM_triggerConfig;

typedef struct eNVM_armState {
 uint32_t delayArmTimeUsed_seconds; // the value passed in with the "delay arm" command;
requirement wants minutes, that's a job for the GUI
 char armString[ARMSTRING_SIZE]; // aka "arming time stamp" or maybe "event description";
provided with arming command
 temperature t1Temp_arm; // 't1' is the arming 'trigger', i.e. the arm command in whatever
form it takes
 uint16_t memoryOverwriteProtect; // memory protection must be disabled in the
configuration utility, but this also gets written during arm

60

} eNVM_armState;

// probably clear these out (or at least triggerCount) whenever arm-lock is set
typedef struct eNVM_trigState {
 temperature t2Temps_trigger[TRIGGERS_MAXCOUNT]; // 't2' is the trigger as we know it
 uint16_t triggerCount; // triggers detected, thus also the number of valid entries in the
above table; if greater than TRIGGERS_MAXCOUNT, all entries in the above table are valid
} eNVM_trigState;

// envmDump is a 640-byte buffer containing the output of command 4, converted from characters
back to bytes

eNVM_consts *ENVM_CONSTANTS_PTR = (eNVM_consts*)(envmDump);
eNVM_configuration *ENVM_CONFIGURATION_PTR = (eNVM_configuration*)(envmDump + ENVM_PAGE_SIZE);
eNVM_triggerConfig *ENVM_TRIGGERCONFIG_PTR = (eNVM_triggerConfig*)(envmDump + ENVM_PAGE_SIZE *
2);
eNVM_armState *ENVM_ARMSTATE_PTR = (eNVM_armState*)(envmDump + ENVM_PAGE_SIZE * 3);
eNVM_trigState *ENVM_TRIGSTATE_PTR = (eNVM_trigState*)(envmDump + ENVM_PAGE_SIZE * 4);

// at this point, you can access the contents of the structures like so:
printf("Unit label: ");
fwrite(ENVM_CONFIGURATION_PTR->unitLabel, 1, UNITLABEL_SIZE, stdout);
printf("\n");
printf("Serial number: %u\n", ENVM_CONFIGURATION_PTR->serialNumber);

Warning: The fields in the structures may be “optimized” by your compiler into a different
sequence or packing. It is technically possible to copy this code verbatim and have fields not be
populated properly. Should this happen, it would probably be simplest to parse out the
individual fields one at a time from the data returned by command 4; the fields in each page
dumped by that command will be in the order given above, each structure field in sequence from
top to bottom.

On-Board Instrumentation Support Electronics Design
For earth penetrator applications, the AE Recorder modules require only a battery. The module
is complete with a power interface board to connect the battery when commanded. For a sled
track application that must be self-contained while also maintaining electrical isolation between
the instrumentation and the outside world, additional support electronics are required to
communicate with the system and manage the battery. Three additional circuit boards handle
these functions: the 3A7001 Safe-State Monitor with protected electrical connections for battery
maintenance and instrumentation status; 3A7002 External Fiber-Optic Interface to provide
electrically-isolated communication and control; and the 3A7004 Battery Management System
board.

3A7001 Safe-State Monitor Board
This simple board includes a 15-pin connection to a matching connector on the 3A7002 board,
with schematic in Figure 31 and a blank board shown in Figure 32. A circular, 10-pin Glenair
803-005-7-10 socket connector with metal dust cap provides access to the necessary signals
while still meeting isolation requirements. Diodes D1 and D2 are bright LEDs providing
redundant indication that the instrumentation is powered. The remaining 9-pin connector
supports two loops of serially-connected LEDs. From one to six LEDs can be used in each
string. A 40mA drive from the 3A7002 board pulses the LEDs at a programmable rate to allow
external synchronization of photometric equipment with the AE Recorder memory.

 61

Figure 31. 3A7001-002 Safe-State Monitor Board Schematic

Figure 32. 3A7001-002 Safe-State Monitor Board

3A7002 External Fiber-Optic Interface Board
Multi-mode fiber from the sled track connects to the test article through the 3A7002-003
External Fiber-Optic Interface Board, which has two fiber photodiodes, four receivers, and two
transmitters. Multi-mode fibers show greater resistance to failure when exposed to the usually
dust-filled environment of a sled track test. The two fiber photodiodes provide redundant power-
on detectors, driving the gates of transistors to control application of battery power to the entire

Red LEDs for Power Verification, 10mA

Power_LED_B

Power_LED_A

Blink_LED_A

Blink_LED_B
Power_Mon_B

Connector to
3A7002 Ext. FO Iface

Blink_LED_A_Rtn

Blink_LED_B_Rtn
Charger+

J3
MDM-15SBS
MDM-15SBS

1

2

3

4

5

9

10

11

12

6

7

8

13

14

15
nBMS_Awake

Charger+

Power_Mon_A

J1
MDM-9SBS
MDM-9SBS

1

2
3
4

5

6

7

8

9

D2
LED_Red
516-1387-ND
LED_0-1_TH

Vf = 1.9V

A
C

Circular Connector to 4A1391
Test Article Field Interface Box

Blink_LED_A
Blink_LED_A_Rtn

Blink_LED_B
Blink_LED_B_Rtn

Connector to two strings of red
LEDs for synchronization, 54mA

J2
CONN SOCKET 10
CONN_GLN_803-005-7-10

1
2
3
4
5
6
7
8
9

10

Charger+

Charger+

Power_LED_A

Power_Mon_A

Power_Mon_B

nBMS_Awake

D1
LED_Red
516-1387-ND
LED_0-1_TH

Vf = 1.9V

A
C

Power_LED_B

62

system. Two each of the four receiver fiber interfaces drive the Trigger input shared among all
the AE Recorder module. The other two fiber receivers are employed for the UART serial
interface. Both redundant serial interface receive signals are monitored by the board’s Microchip
PIC24FJ64GB204 microcontroller. If the microcontroller detects that the default channel does
not have data while the back-up fiber does, communication is automatically switched to the
active fiber for all the AE Recorders. The two fiber transmitters handle the transmit part of the
UART serial interface, and both redundant transmit fibers are always active.

Figure 33. Fiber-Optic and Microcontroller Schematic Portion of the 3A7002 Board

In addition to monitoring the fiber-based serial communication, the microcontroller firmware
also qualifies the power-on signal from the photodiode outputs. The signal must remain asserted
for more than one second to qualify powering the on-board instrumentation. (This one-second
qualification was omitted from the Impact 1 test firmware.) Following detection, qualification,
and latching power on, the 3A7002 waits for commands from the serial interface to power the
AE Recorder modules. Each recorder is powered using a separate command. All of the fiber
interface modules are shown in the top-level hierarchical schematic in Figure 33.

Finally, the microcontroller also generates a “Blink” synchronization signal shared among all the
AE Recorder modules and output to the 3A7001 Safe-State Monitor board. This Blink signal
will appear in each of the AE Recorder modules’ data, and when connected via the 3A7001
board to an externally visible LED string, can also synchronize AE Recorder data with external

A_Ind1
A_Ind2
A_Ind3
A_Ind4

External Test Power

Microcontroller1

CPU

Tx_En5

Power_On3
Power_On4

Power_On2
Power_On1

Latch_Pwr

Rec_Tx5

Rx_A

VBatt

TrgMon

PowerOnAn
PowerOnBn

Diag_Tx
Diag_Rx

Select_A_Bn
V16Meas

V3-3

Blink_Out

Rx_B

16V Power Conv erter1

PWR CONVERT

Battery _Latched
V16

Test_Power
V16Meas

Vreg_Pwr
Battery _Latched

Test_Power
V16Meas

V16Meas

FO_Power_Switch1

PWR SWITCH

Battery

Latch_Pwr

Battery _Latched

PowerOnAn
PowerOnBn

VBatt

Battery

Latch_Pwr

Battery _Latched

PowerOnAn

Rx_B

PowerOnBn

Rx_A

Rx_B

VBatt

VBatt

Blink_Out

Rec_RX

Rx_A

TX_En1
Rec_TX1

Rec_TX3

TX_En2
Rec_TX2

Rec_TX4

TX_En3

Tx_En5
Rec_Tx5

TX_En4

Tx_En6
Rec_Tx6

PowerOnBn
PowerOnAn

Trig_Fidu_n

Trig_Fidu_n

SMPC1

SMPC

V16 V5

V3-3

V3-3

V5

V5

V3-3

V5

V3-3

V5

V3-3

Vreg_Pwr

Fiber Interf ace1

Serial_In_FO_Rcv

Trig_Fiducial_n

Rec_RxSelect_A_Bn

V5

V3-3

Rx_A

Rx_B

Select_A_Bn

nBMS_Awake

J5
HEADER 14
SIP_TM_L-1400_14

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Charger+

Latch_Pwr

Battery

Recorder Vext Power

J7
4 HEADER

1
2
3
4 Indicators1

INDICATORS

Arm_Ind1
Arm_Ind2
Arm_Ind3
Arm_Ind4

V5

LtcPwrMon1
LtcPwrMon2
LtcPwrMon3
LtcPwrMon4

Rec_RX
TX_En6

Rec_TX6

Serial Driv er1

Serial_Out_FO_Xmt

Rec_TX4

Rec_TX1

Rec_TX2

TX_En1

TX_En2

TX_En4

TX_En3

Rec_Tx5
Tx_En5

Rec_TX3

Tx_En6
Rec_Tx6

V5

V3-3

Diag_Tx
Diag_Rx

Select_A_Bn

Latch_PwrV5

Ltc_Pwr_Mon1
Ltc_Pwr_Mon2
Ltc_Pwr_Mon3
Ltc_Pwr_Mon4

Tx_En5

Rec_Tx5

Distributes 16.0V to
all recorders

Can sequence
recorder turn-on

J8
4 HEADER
SIP_TM_L-400_4

1
2
3
4

Test_Power

Vext_Pwr

Power_On1

Power_On3
Power_On2

Connector to Battery
Management System 3A7004

Power_On4

Communication with Battery
Management System 3A7004

 63

photometric measurements. The period and duty cycle of the Blink signal is field-configurable
using the serial command interface.

The Blink feature was a late add-on for the previous test, Impact 1, and had some
implementation flaws. First, the frequency and period were fixed in the firmware without an
ability to field configure. This inflexibility made debugging and testing by the photometric crew
more difficult. And most importantly, the Blink signal was previously routed to Discrete signal
inputs on each AE Recorder module, which required cable connections soldered during test
article assembly. In the revised hardware, this latter problem was corrected by a change to the
AE Recorder that included an optional input signal in the 15-pin power and interface connector,
the “Heart_Sync_n” signal shown in Figure 35. This avoided the need for field connections
because the signal was directly connected to the recorder. The Discrete byte now includes
Trigger, Blink Synchronization, and Discrete 1 through 6. The signals are routed to the 3A7001
Safe-State Monitor board from connector J12, shown in Figure 34. Constant-current diodes limit
power from the 16V Vreg_Pwr that is then applied to the interface. Three, 18mA current-limit
diodes in parallel drive the Blink LED strings to produce a bright photometric synchronization
signal.

64

Figure 34. Connections to the 3A7001 Safe-State Monitor Board

Connections to the AE Recorder modules are shown in Figure 35. Each recorder transmits data
on a separate line, Rec_Tx1 through Rec_Tx4, with the signals combined on the 3A7002 board
using the corresponding TX_En1 through TX_En4 signals.

Power_LED_B

Vreg_Pwr

Vreg_Pwr

V5

V5

V5

R1
100k
SMR0402

D2
18mA_const_curr
SOD-123_425-04
Iout = 10mA

A CVreg_Pwr

Vreg_Pwr
D4
18mA_const_curr
SOD-123_425-04
Iout = 10mA

A C

Blink_LED_A

Power_LED_A

R2
100k
SMR0402

Power_Mon_B
Blink_LED_B

Vreg_Pwr

Vreg_Pwr

Connector to 3A7001
Safe-State Monitor

Q2
2N7002W

60V
SC70-3_EIAJ

3

1

2

Q1
2N7002W

60V
SC70-3_EIAJ

3

1

2

Blink_LED_B_Rtn

Blink_LED_A_Rtn

Charger+

J12
MDM-15PBS
MDM-15PBS

1

2

3

4

5

9

10

11

12

6

7

8

13

14

15

D1
10mA_const_curr
SOD-123_425-04
Iout = 10mA

A C

D3
10mA_const_curr
SOD-123_425-04
Iout = 10mA

A C

Charger+

Blink_Out_Buf

V5

R53
2.0k
SMR0402

D25
LED_Yel
SMD0603
Vf = 2.1V

A
C

Q17
2N7002W

60V
SC70-3_EIAJ

3

1

2

Blink_Out

U3
SN74LV1T86DCK
SC70-5_DCK

1

2
4

5

3

XOR used as
optional inverter

R7
274k
SMR0402

R6
DNI
SMR0402

Q18
2N7002W

60V
SC70-3_EIAJ

3

1

2

nBMS_Awake

D24
18mA_const_curr
SOD-123_425-04
Iout = 10mA

A C

Power_Mon_A

D22
18mA_const_curr
SOD-123_425-04
Iout = 10mA

A C

D23
18mA_const_curr
SOD-123_425-04
Iout = 10mA

A C

D21
18mA_const_curr
SOD-123_425-04
Iout = 10mA

A C

Vreg_Pwr

R54
2.0k
SMR0402

Vreg_Pwr

H
e

ar
t_

S
yn

c_
n

Vreg_Pwr

Vreg_Pwr

 65

Figure 35. AE Recorder Connections from the 3A7002 Board

Power on the 3A7002-003 External Fiber-Optic Interface Board is first stepped-down from the
raw 36.5V maximum LiFePO4 battery voltage to 16V using the Switch-Mode Power Converter
shown in Figure 36. The 16V is distributed to all the AE Recorder modules to charge each
recorder’s internal capattery. Current draw for all four fully-powered AE Recorder modules plus
the support electronics is about 650mA, well within the SMPC’s 2A capability. This SMPC is
about 80% efficient, so draws less than 0.5A from the 32V nominal battery. Another SMPC, the
same low-noise Linear Technology LTM8031 module used in the AE Recorders, steps down the
16V to 5V for use by the fiber optics and microprocessor.

Figure 36. SMPC Produces 16V Power from the 32V Nominal Battery

3A7004 Battery Management System
Lithium-ion cells have the highest energy density by volume and weight, and were used in the
AE Recorder on-board instrumentation system because the volume available for a battery was a
design constraint. The trade-off using a lower-density chemistry would have been shorter
operating time and a requirement to top-off the battery immediately before the test. However, if
lithium chemistry cells are used outside their safe operating area, the cells can fail
catastrophically by bursting into flames or exploding. A critical factor in safe operation is
ensuring cells are not over-charged, and to a lesser extent, over-discharged. The Battery
Management System board monitors cell voltages during charge, allowing microcontroller
firmware to apply balancing loads to charge all cells to equal capacity without over-charging. A
fully-charged pack with all cells having balanced capacity also helps avoid over-discharge on

TX_En1 TX_En4TX_En3TX_En2
Trig_Fidu_n

Data_Out_P1 Data_Out_P2
Data_Out_M2Data_Out_M1 Data_Out_M3

Data_Out_P3 Data_Out_P4
Data_Out_M4

Trig_Fidu_n Trig_Fidu_n Trig_Fidu_n

J1
CON15
MDM-15PBS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Vext_Pwr
Vreg_Pwr

A_Ind1
Rec_TX1

Rec_RX

Power_On1
Heart_Sy nc_n

J2
CON15
MDM-15PBS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

J3
CON15
MDM-15PBS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Rec_TX2
Vext_Pwr
Vreg_Pwr

Rec_RX

A_Ind2

J4
CON15
MDM-15PBS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Power_On2
Heart_Sy nc_n

Vreg_Pwr

A_Ind3
Rec_TX3
Vext_Pwr

Power_On3
Heart_Sy nc_n

Rec_RX
Vcap_Mon1
Ltc_Pwr_Mon1 Ltc_Pwr_Mon2

Vcap_Mon2 Vcap_Mon3
Ltc_Pwr_Mon3 Ltc_Pwr_Mon4

Vcap_Mon4

Vreg_Pwr

A_Ind4
Rec_TX4
Vext_Pwr

Power_On4
Heart_Sy nc_n

Rec_RX

C7
10uF
SMC0805
X5R
25V

TP2
TEST POINT

1

C14
20pF
SMC0402
NP0
50V

C13
1000pF
SMC0805
NP0
50V

C12
2.2uF
SMC0805
X5R
50V

Test_Power

Rt(k-ohm) = 92417 / (Freq sw (kHz))^0.991
182k produces 536kHz

0.8 V 1% Internal Voltage Reference

Rhs = Rls x (Vout - 0.8) / 0.8
190k Rhs produces Vout=16V

R19
182k
SMR0402

R21
24.3k
SMR0402

R20
10k
SMR0402

R18
191k
SMR0603

D16
SK310A
DO-214AC

3A
100V

A C

D14
SK310A
DO-214AC

3A
100V

A C

D15
SK310A
DO-214AC
100V
3A

A
C

Battery _Latched

U4

TPS54340

BOOT
1

Vin
2

EN
3

RT/CLK
4

FB
5COMP
6GND
7SW
8

G
N

D
/P

a
d

9

Float EN
to enable

L1
33.0 uH

3.3A
XFMR_SRR1280

V16

C8
10uF
SMC0805
X5R
25V

Diode used to allow Vext
applied for testing

C9
10uF
SMC0805
X5R
25V

C10
10uF
SMC0805
X5R
25V

C11
10uF
SMC0805
X5R
25V

C6
0.1uF
SMC0402
X7R
16V

Output is
16.0V, 2A

66

cells that might otherwise have received an incomplete charge. The BMS disconnects the
charger current when the pack is fully charged, and when the battery pack is tested following
assembly, the BMS also disconnects the load during discharge cycling. The load disconnect
feature is disabled for test operations. The BMS continuously reports cell data during charging
using the fiber-optic serial interface on the 3A7002 board.

The AE Recorder 32V nominal on-board instrumentation battery is composed of 10 each K2
Energy LFP26650P80 cells, 2.6A-Hr nominal. Since the instrumentation provides a 0.5A load, a
fully-charged battery should operate the system for about 5 hours. The very low self-discharge
rate from LiFePO4 and the associated battery management system should allow recharging after
test article assembly and check-out is complete and no further servicing for several months,
however, since the recharging capability is readily available, the battery is topped off on the day
of test. During non-operational time, the battery management system is set to Sleep mode which
draws about 0.1mA, equivalent to less than 5% self-discharge after one month.

The 3A7004-002 Battery Management System board uses two Texas Instruments bq76PL536a
BMS devices connected in series, with each chip monitoring 5 of the 10 cells. The top level of
the hierarchical schematic is shown in Figure 37. Although the bq76PL536a battery
management system chip gets power directly from the battery, the microcontroller and similar
circuits on the 3A7004 board need 5V power. This is provided from the 3A7002 External Fiber-
Optic Interface board. Once the power-on photodiode is illuminated from the optical fiber, the
3A7002 board is powered and in turn powers the 3A7004 board.

Figure 37. Battery Management System Hierarchical Schematic Top Level

One problem encountered during the Impact 1 test article assembly was that the BMS was
inadvertently left operating. In Sleep mode the BMS consumes only 0.1mA, but when awake the
power climbs to 12mA. This can discharge the 2.6A-Hr battery in about nine days. To make
this condition detectable without exposing raw battery voltage outside the instrumentation, an
Opto-MOS switch was incorporated in the design. The nBMS_Awake signal is an open-drain
output from a TLP3250 Opto-MOS transistor. When in Sleep mode, the bq76PL536a chip

nBMS_Awake

Load+Cell_P10

nBMS_Awake

Charger+

J4-2
J4-12

Vss1

USB_Drv _E

USB_5V

Rx
Tx

USB_DP
USB_DN

USB5V

J1

USB Mini-B 54819-0572
USB_CONN_5PIN_NO_TH

Vpwr
1

D-
2

D+
3

n/c
4

Gnd
5

Shell
9

Controller

Controller

Alert
Fault

SCLK
MOSI

CSn
MISO

Diag_Tx
Diag_Rx

Coulomb_SCL
Coulomb_SDA

TM_Tx
TM_Rx

EnableL
EnableC

Latch_Pwr

TM_En

Enable

nAlert

Vss1

J4-3

J4-13
J4-14

J4-5
J4-4

J4-15
J4-16
J4-17
J4-6

SDI
SCLK

CSn

Alert

SDO

Fault

Vss1

Opto_Interf ace
Opto_Interf ace

Alert_H
Fault_H

SCLK_H

SDO_H
SDI_H

CSn_H

Rtn_Isolated

SCLK

SDO
SDI

CSn

Alert
Fault

Enable

Coulomb_Count

Coulomb_Count

Battery

Bat_Rtn

SCL
SDA

nAlert

Latch_Pwr J2
4 HEADER
SIP_TM_L-400_4

1
2
3
4

TH1 10k SMR0603
TS1+ TS1-

Cells 1 to 5

5-CELL_SECTION_BOT2
5-Cell_Section

Cell_P0
Cell_P1
Cell_P2
Cell_P3
Cell_P4

C
on

v_
N

D
rd

y_
N

A
le

rt
_N

F
au

lt_
N

S
C

L
K

_
N

S
D

O
_N

S
D

I_
N

C
S

_N

TS2+
TS2-

TS1+
TS1-

Alert_H
Fault_H

SCLK_H

SDO_H
SDI_H

CSn_H

C
on

v_
S

D
rd

y_
S

A
le

rt
_S

F
au

lt_
S

S
C

L
K

_
S

S
D

O
_S

S
D

I_
S

C
S

_S
H

_S
el

_n

Cell_P5

nPwrOn
Ref _Gnd

Cells 6 to 10

5-CELL_SECTION_TOP2
5-Cell_Section

Cell_P0
Cell_P1
Cell_P2
Cell_P3
Cell_P4

C
on

v_
N

D
rd

y_
N

A
le

rt
_N

F
au

lt_
N

S
C

L
K

_N
S

D
O

_N
S

D
I_

N
C

S
_N

TS2+
TS2-

TS1+
TS1-

Alert_H
Fault_H

SCLK_H

SDO_H
SDI_H

CSn_H

C
on

v_
S

D
rd

y_
S

A
le

rt
_S

F
au

lt_
S

S
C

L
K

_
S

S
D

O
_S

S
D

I_
S

C
S

_S
H

_S
el

_n

Cell_P5

nPwrOn
Ref _Gnd

J4-18

J4-7

TS4-
TS4+

TS3-
TS3+

J4-8

J4-19
J4-9

Cell_P10

J4-20
J4-21

Vss1

J4-11
J4-10

Cell_P2
Cell_P1

TS2+

Cell_P4
Cell_P3

TS1-
TS1+

TS2-

Vss1

Regulator

Regulator

V5 V3-3

V3-3V5

Chg_Prot_Cntl

Chg_Prot_Cntl

Battery Load
Charger
ChargeEnable
LoadEnable

Tx6
Rx6
TxEn6

Cell_P7
Cell_P6

Cell_P8

Cell_P5

Cell_P5

Cell_P9
Cell_P10

J4-1

Enable

 67

removes Reg50 power and the output will be open. When the BMS is active, it will pull the
signal to ground. A resistance measurement between nBMS_Awake (labeled BMS AWAKE on
the test article interface) and Return should show less than an Ohm or so when the BMS is
active.

Figure 38. Battery Management System Sleep Monitor Circuit

The assembled 3A7004 board with an MDM-21S harness installed is shown in Figure 39. The
10-cell battery pack is built with a mating MDM connector to attach individual cells to the
balancing circuit and the main battery output and return. Spacing between the circuit board edge
and the battery pack housing is tight, so that a board-mounted MDM connector was useless.
With no need to route all connections to a single point, a harness was used with wires connected
close to their associated circuits, and only four board layers were needed.

Figure 39. 3A7004-002 Battery Management System Board

R39
274k
SMR0402

D11
LED_Grn
160-1435-1-ND
SMD0603

A
C

R29
1.00k
SMR0402

R27
340
SMR0402

Ref _Gnd

nPwrOn
Reg50

GPIO

Cell_P0

Isolated indication BMS active

Q21
TLP3250
SSOP4

1

2

3

4

Reg50

D10
LED_Org
160-1434-1-ND
SMD0603

A
C

Q6
2N7002W

SC70-3_EIAJ
60V

1

3
2

68

The right half of the board has the bq76PL536a chips and the far right edge the balancing
resistors. The upper left quadrant holds the supervisory microcontroller, a Microchip
PIC24FJ128GB204. This is essentially the same microcontroller used on the AE Recorder’s
3A6999 Power / Interface and 3A7000 Analog boards, except in a 44-pin package. The USB
connector near the microcontroller is helpful for firmware development. The UART serial
interface for reporting data during sled track operations connects through J2 to the matching
connector J7 on the 3A7002 board. The battery output and the 5V input appear on J3, which is
shown on the bottom, left edge of the 3A7004 board. The pin definition in J3 matches J5 on the
3A7002 board, which is physically adjacent to the 3A7004 board.

CONCLUSIONS
All four Anomalous Environment Recorder modules installed in the B61-12 sled track test article
successfully returned all data during the first use on a March 2016 test, Impact 1. The design,
with some minor updates based on this test experience, will form the on-board instrumentation
for two subsequent rocket sled tests. The AE Recorder also provides an expanded capability,
high fidelity, robust data recorder for earth penetrator applications.

This first use of a high-speed serial interface in penetrator instrumentation makes the extreme
depth of memory practical, with data extraction time about the same as the recording time. The
combination of both FRAM and Flash non-volatile memory was effective to capture the required
pre-trigger and post-trigger data.

Shock levels may not have been high enough to qualify the design for earth penetrator
applications; in particular the robustness of one component is of concern: the switch-mode power
converter whose efficiency helped enable the long, 5-second operating time after external power
loss and reduced power requirements by 50%. However, since the AE Recorder uses proven
shock-hardened mechanical design and encapsulation methods, the design is expected to handle
earth penetrator shock levels including the high jerk.

 69

REFERENCES
1. SAND2009-6461C, A Review of the Sandia Rocket Sled Track Accident. May, Rodney A.
Kansas City, MO : s.n., 2009 . Western Regional Strain Gage Committee Test & Measurement
Conference.
2. Medina, AJ, Stofleth, JH, Dinallo, MA. SAND2009-0180, Technical Advisory Team (TAT)
Report on the Rocket Sled Test Accident of October 9, 2008. s.l. : Sandia National Laboratories,
January 2009.
3. Partridge, ME, Larsen, CA, McGrogan, DP, Neidigk, M. SAND2013-0391 3DDR-AM
Brass-Board Development. s.l. : Sandia National Laboratories, 2013.
4. Welch, B and Partridge, M. Methods for Automatic Trigger Threshold Adjustment.
8,676,540 United States of America, March 18, 2014.
5. Partridge, Michael E and Welch, Benjamin J. SAND2005-6681, HiCapPen Earth
Penetrator Instrumentation Development. 2005.
6. Adolf, D. B., M. Neidigk, R. Chambers, M. Neilsen, S. Spangler, K. Austin. Packaging
Strategies for PCB Components, Vol. I: Materials & Thermal Stresses, Report SAND2011-4751.
s.l. : Sandia National Laboratories, 2011.
7. Curtis, S., Neidigk, M., & O’Malley, P. SAND2013-1668, Electronics Packaging for High-G
Environments: Literature Survey, . s.l. : Sandia National Laboratories, March 2013.
8. AVX Corporation. AVX BestCap® Ultra-low ESR High Power Pulse Supercapacitors
Version 11.4 data sheet. 2011.
9. Zetex. ZDS1009 SM-8 Complementary Current Mirror data sheet. 2000.
10. Meggitt. Endevco Model 7270A Piezoresistive Accelerometer. 2011.
11. Irwin, J. D. The industrial electronics handbook. The electrical engineering handbook
series. s.l. : CRC Press, 1997.
12. Piersol, A., Paez, T. and Harris, C. Harris’ shock and vibration handbook. s.l. : McGraw-
Hill, 2009.
13. Microchip. PIC24FJ64GB004 Family Data Sheet. 2010.
14. Micron Technology. MT29F8G08ABABA 8Gb Asynchronous/Synchronous NAND Flash
Memory Features data sheet. 2009.
15. Ramtron International. FM23MLD16 8Mbit F-RAM Memory data sheet. 2008.
16. Hoke, Darren; Partridge, Michael E; Mittas, Anthony; Henry, Edward A; Lockhart,
Randall R. SAND2002-3576, Micro High-g Acceleration Recorder LDRD Final Report. (Note:
This report refers to the 3AMP development.). 2002.
17. Partridge, Michael E and McGrogan, David P. SAND2012-0719, 3DDR-AM Breadboard
Status Report. 2012.
18. Texas Instruments. ADS7865 Dual, 12-Bit, 3+3 or 2+2 Channel, Simultaneous Sampling
Analog-to-Digital Converter Data Sheet. 2010.
19. Tektronix, Inc. Application Note, Effective Bits Testing Evaluates Dynamic Performance of
Digitizing Instruments. s.l. : Tektronix, 2008.
20. Partridge, Michael E. SAND2011-4614P, 3DDR-AM Block 2 Requirements. 2011.
21. Linear Technology. LTM8031 Ultralow Noise EMC 36V, 1A DC/DC μModule Regulator
data sheet. 2009.
22. Texas Instruments . TPS54620 4.5V to 17V Input, 6A Synchronous Step Down SWIFT™
Converter data sheet. 2011.
23. Larsen, Cory A. SAND2011-9467, Signal Conditioning Circuitry Design for
Instrumentation Systems. 2011.

70

24. Wang, Darren and Niemczura, Johnathan. SAND2012-0542, DTRA/SNL Fuze Diagnostic
Recorder Inductor Testing: FY11 Year End Report. 2012.
25. Analog Devices. AD8224 Precision, Dual-Channel, JFET Input, Rail-to-Rail
Instrumentation Amplifier Revision B data sheet. 2010.
26. Microsemi Corporation. SmartFusion Customizable System-on-Chip (cSoC) Revision 7
data sheet. 2011.
27. Silicon Labs. Si500S Single-Ended Output Silicon Oscillator Rev. 1.0 data sheet. 2011.
28. Micro Oscillator Inc. MOI-2000 CMOS Clock Oscillator data sheet. 2008.
29. Actel Corporation. SmartFusion Development Kit User’s Guide. 2011.
30. Texas Instruments. PCA9557 Remote 8-Bit I2C and SMBus Low-Power I/O Expander with
Reset and Configuration Registers data sheet. 2008.
31. Sandia National Laboratories. ADAGIO/ANDANTE Users Reference Manual.
Albuquerque, New Mexico : s.n., 2005.
32. A simplified potential energy clock model for glassy polymers. Adolf, D. B., R. S.
Chambers, and M. A. Neidigk. Polymer, 2009, Vols. 50, pp. 4257-4269.
33. Scherzinger, W. M., and D. C. Hammerand. Constitutive Models in Lame Report
SAND2007-5873 . s.l. : Sandia National Laboratories, 2007.
34. Sandia National Laboratories. PRESTO Users Reference Manual. Albuquerque, New
Mexico : s.n., 2005.
35. Walter, P. L. “Measurement systems engineering.” Short Course, Taught at Sandia
National Laboratory. 2010.
36. Jung, W. G. Op-Amp Applications Handbook. s.l. : Newnes, 2005.
37. Texas Instruments. FilterPro User’s Guide. 2011.
38. Bishop, J. Filter-pro low-pass design tool. s.l. : Texas Instruments, 2002.
39. Stitt, R. M. Voltage-reference filters, Application Note SBVA002. s.l. : Texas Instruments,
1991.
40. Ryerson, D. E. Signal conditioning primer. s.l. : Sandia National Laboratories, 1996.
41. —. Distortion of penetrator data by analog and digital filters. s.l. : Sandia National
Laboratories, 1989.
42. Karki, J. Active low-pass filter design. s.l. : Texas Instruments, 2000.
43. Oljaca, M. Understand the limits of your ADC input circuit before starting conversions.
Analog Zone.
44. Paarmann, L. D. Design and Analysis of Analog Filters: A Signal Processing Perspective.
s.l. : Kluwer Academic Publishers, 2001.
45. Oppenheim, A. V., Schafer, R. W. and Buck, J. R. Discrete Time Signal Processing. s.l. :
Prentice Hal, 1999.
46. The digital all-pass filter: A versatile signal processing building block. Regalia, P.A., Mitra,
S. K. and Vaidyanathan, P. no. 1, s.l. : Proceedings of the IEEE, 1988, Vol. vol. 76.
47. Texas Instruments. Analysis of the Sallen-Key architecture. 2002.
48. Steffes, M. Design methodology for MFB filters in ADC interface applications. s.l. : Texas
Instruments, 2006.
49. New concept of delay equalized low-pass Butterworth filters. Piskorowski, J. and
Kaszynski, R. vol. 1, pp. 171-175, 2006, Vol. 2006 IEEE International Symposium on Industrial
Electronics.
50. Zumbahlen, H., ed. Linear Circuit Design Handbook, ch. 8: Analog Filters. s.l. : Newnes,
2008.

 71

51. Oljaca, M., and Downs, R. Designing SAR ADC drive circuitry – part I: A detailed look at
SAR ADC operation. Analog Zone.
52. —. Desiging SAR ADC drive circuitry – part III: Designing the optimal input drive circuit
for SAR ADCs. Analog Zone.
53. —. Designing SAR ADC drive circuitry – part II: Input behavior of SAR ADCs. Analog
Zone.
54. Mancini, R. and Carter, B., eds. Op Amps for Everyone – Third Edition. s.l. : Newnes,
2009.
55. Analog Devices. 2.7 V to 5.5 V, 450 μA, Rail-to-Rail Output, Quad, 12-/16-Bit nanoDACs.
2006.
56. Texas Instruments. PGA112 Zero-Drift, Programmable Gain Amplifier with Mux. 2008.
57. Oljaca, M., and Downs, R. Designing SAR ADC drive circuitry – part II: Input behavior of
SAR ADCs. Analog Zone.
58. Texas Instruments. SN65LV1224B 10-MHz To 66-MHz, 10:1 LVDS Serializer /
Deserializer. 2009.
59. SAND2010-6971C, Premature ignition of a rocket motor. Moore, Darlene Ruth. s.l. : U.S.
Dept. of Energy, Office of Scientific and Technical Information, 2010.
60. Neidigk, M., Starr, M., & Curtis, S. SAND2015-5311, Packaging Strategies for Harsh
Thermal and Mechanical Environments Volume III: Assembly Studies. s.l. : Sandia National
Laboratories, July 2015.

72

APPENDIX A – ALPHABETICAL COMMAND LIST

1
print the entire contents of SRAM (4096 bytes), followed by a 4‐byte CRC checksum; only
the first 4080 bytes contain record data

2
print a page of FRAM (4096 bytes), followed by a 4‐byte CRC checksum; the beginning of
the page is not guaranteed to line up with the beginning of a record

3
print a page of flash (4182 bytes), followed by a 4‐byte CRC checksum; each group of 12
records (one glob) is followed by 6 bytes of Reed‐Solomon error‐correcting code (ECC)

4 print the raw contents of the eNVM configuration memory (640 bytes)

A arm the recorder immediately; the recorded arm delay is zero

B clear FRAM

b clear flash

C force trigger

D arm after a delay

d read current time until arming happens

E
re‐enable arming/data taking (clear the memory lock in eNVM) if not taking data or
counting down a timer

e set/read FRAM position/loops (command 'S' modifies this if not armed or recording)

F dump FRAM page over SERDES (optional: dump N pages)

f force‐stop all delaying/arming operations; recording won't be stopped w/o reset (cmd R)

G dump flash page over SERDES (optional: dump N pages)

g dump the next page (FRAM or flash) over SERDES (optional: dump next N pages)

H put test patterns in FRAM (disabled if memory is locked)

h put test patterns in flash (disabled if memory is locked)

I send raw i2c data

i receive raw i2c data

J enter manual menus

j enable/disable debug messages

K retry the most recent SERDES dump from FRAM

k retry the most recent SERDES dump from flash

L set/read current data‐recording address in data memory (block and page)

l
set/read the current duration of the warmup delay, which happens prior to arm‐state
recording

M set/read trigger enables

m
set/read trigger threshold enables (both these and the trigger enables from command M
must be enabled to enable a trigger threshold)

N set/read overlap records (# of records stored in both FRAM and flash)

n set/read pages per trigger, max 0x40000 (204 records/page; 250k records/second normally)

O set/read SERDES enable state

o set/read trigger high/low offsets from quiescent

P set/read power state (from power board)

p
get data/voltages from power board (see power board docs; valid selections are 1=power‐
up count, 2=power enable count, 4=capattery voltage, 5=battery voltage, 6=temperature)

 73

Q set/read between‐record delay (acquisition frequency = 50 MHz/(167+this))

q set/read trigger condition minimum durations

R reset/reboot the microcontroller and flash

S read current voltages/inputs

s get status ‐ current state, arming countdown, time spent waiting before last trigger, etc.

T hardware test (verify connections to FRAM, flash)

t set/read multi‐trigger enable

U set/read unit serial number (9 digits max)

u set/read the description string of the unit

V set/read analog board reference/bias voltages

v set/read arm‐on‐power‐up

W
get current mode: U=User, D=Delay‐Arm, W=Warmup, F=Arm‐First, R=Recording, A=Arm‐
Again, P=Power‐down, L=Locked (can't arm, data present), O=other

w get unit identity and firmware revision

X save/revert configuration data to values stored in nonvolatile eNVM

Y set/read analog channel offset values

y set/read analog channel gain values

Z set/read digital channel threshold voltage

z read arm string

; enable/disable automatic power‐off when recording is finished or end of flash is reached

~ enable/disable 1Hz heartbeat signal output

+ set/read unit address; value is ASCII hex equivalent of address character, e.g. '1' = 0x31

= get number of usable flash pages (0x40000 if no bad blocks)

_ get number of pages of recorded data (if 0, no data is present; if same as '=', flash is full)

‐ get flash bad block list
? print a help message and enable input echo, for simpler direct human control
/ disable input echo, for returning to program‐controlled operation after using command “?”

74

APPENDIX B – COMMAND LIST BY CATEGORY

Collecting Data

Preparing to Arm

E
re‐enable arming/data taking (clear the memory lock in eNVM) if not taking data or
counting down a timer

B clear FRAM

b clear flash

Arming
A arm the recorder immediately; the recorded arm delay is zero

D arm after a delay

v set/read arm‐on‐power‐up

While arming or armed
d read current time until arming happens

f
force‐stop all delaying/arming operations; recording won't be stopped w/o reset
(cmd R)

C force trigger

Retrieving Data

Via SERDES (quickly)

F dump FRAM page over SERDES (optional: dump N pages)

G dump flash page over SERDES (optional: dump N pages)

g dump the next page (FRAM or flash) over SERDES (optional: dump next N pages)

K retry the most recent SERDES dump from FRAM

k retry the most recent SERDES dump from flash

O set/read SERDES enable state

Via serial (slowly)

1
print the entire contents of SRAM (4096 bytes), followed by a 4‐byte CRC checksum;
only the first 4080 bytes contain record data

2
print a page of FRAM (4096 bytes), followed by a 4‐byte CRC checksum; the
beginning of the page is not guaranteed to line up with the beginning of a record

3
print a page of flash (4182 bytes), followed by a 4‐byte CRC checksum; each group of
12 records (one glob) is followed by 6 bytes of Reed‐Solomon error‐correcting code
(ECC)

4 print the raw contents of the eNVM configuration memory (640 bytes)

Configuration
Saving and reverting settings

X save/revert configuration data to values stored in nonvolatile eNVM

 75

Recording

l
set/read the current duration of the warmup delay, which happens prior to arm‐
state recording

N set/read overlap records (# of records stored in both FRAM and flash)

n
set/read pages per trigger, max 0x40000 (204 records/page; 250k records/second
normally)

Q set/read between‐record delay (acquisition frequency = 50 MHz/(167+this))

t set/read multi‐trigger enable

;
enable/disable automatic power‐off when recording is finished or end of flash is
reached

Triggers
M set/read trigger enables

m
set/read trigger threshold enables (both these and the trigger enables from
command M must be enabled to enable a trigger threshold)

o set/read trigger high/low offsets from quiescent

q set/read trigger condition minimum durations

Analog board
V set/read analog board reference/bias voltages

Y set/read analog channel offset values

y set/read analog channel gain values

Z set/read digital channel threshold voltage

Outputs
~ enable/disable 1Hz heartbeat signal output

Saving and reverting settings – again, because it’s important!
X save/revert configuration data to values stored in nonvolatile eNVM

Diagnostics

d read current time until arming happens

p
get data/voltages from power board (see power board docs; valid selections are
1=power‐up count, 2=power enable count, 4=capattery voltage, 5=battery voltage,
6=temperature)

S read current voltages/inputs

s
get status ‐ current state, arming countdown, time spent waiting before last trigger,
etc.

T hardware test (verify connections to FRAM, flash)

W
get current mode: U=User, D=Delay‐Arm, W=Warmup, F=Arm‐First, R=Recording,
A=Arm‐Again, P=Power‐down, L=Locked (can't arm, data present), O=other

w get unit identity and firmware revision

z read arm string

= get number of usable flash pages (0x40000 if no bad blocks)

_
get number of pages of recorded data (if 0, no data is present; if same as '=', flash is
full)

‐ get flash bad block list

76

Recorder Identity

U set/read unit serial number (9 digits max)

u set/read the description string of the unit

w get unit identity and firmware revision

+
set/read unit address; value is ASCII hex equivalent of address character, e.g. '1' =
0x31

Power and Reset

P set/read power state (from power board)

R reset/reboot the microcontroller and flash

Help and Manual Control

? print a help message and enable input echo, for simpler direct human control

/
disable input echo, for returning to program‐controlled operation after using
command “?”

Advanced and Special Purpose
Test patterns

H put test patterns in FRAM (disabled if memory is locked)

h put test patterns in flash (disabled if memory is locked)

Elapsed time and address state manipulation
e set/read FRAM position/loops (command 'S' modifies this if not armed or recording)

L set/read current data‐recording address in data memory (block and page)

Extra advanced
I send raw i2c data

i receive raw i2c data

J enter manual menus

j enable/disable debug messages

 77

APPENDIX C – COMMAND DESCRIPTIONS IN DEPTH
The format of each command and response contains zero or more fields, expressed with angle
brackets as <field>. If a command field is in brackets, like [<field>], it is optional. If multiple
fields are in the same set of brackets, like [<field1> <field2>], both must be present or absent
together. If a field is in parentheses with an asterisk, like (<field>)*, there may be zero, one, or
more copies of the field, up to a command-specific maximum.

Many commands can both read and write a configuration value. In this case, there will generally
be an optional field in the command, with a corresponding field in the response. If the optional
field is present, the configuration value is being written, and the response will be K if successful;
if the optional field is absent, the configuration value is being read, and the response will be the
same type as the optional field. A few commands of this type, which read and write multiple
values, have multiple optional fields and multiple response fields.

Command descriptions which involve flash will refer to MAXPAGE. This is the maximum
valid page address in flash, and is one less than the response from command =:

MAXPAGE = (response from command =) - 1
The value of MAXPAGE may not be the same across multiple recorder units, as different units
may have different numbers of bad blocks in their flash chips; if more blocks are bad, there will
be fewer good pages in which to record data, so MAXPAGE will be less. (The actual position of
the bad blocks in the chip is invisible to the user; from the user’s perspective, bad blocks are
nonexistent, and all good pages are at consecutive addresses from 0 to MAXPAGE.)

Commands that require a channel index will use values from the right hand side of the table in
the Channel Indexing section. This will lead to a value of 0 referring to analog input 6, for
example, which is very confusing if you don’t notice that the value is an internal channel index.

Example command description

c <mandatoryField> [<optionalField>]

Command fields:

mandatoryField: A field that must always be present.

optionalField: A field that may or may not be present; its presence or absence will affect what
the command does, usually whether the command reads or writes a configuration value.

Response: <responseField> (if command argument not given) or K

Response fields:

responseField: A field in the response; will only be present if optionalField is absent, as stated in
the parentheses above

Whatever the command does will be explained here.

This is a fake command, but it’s similar to the many commands of the “set/read” variety. As
such, mandatoryField would be some sort of address or other selector, and optionalField and
responseField would both be of the same type. In descriptions of this kind of command,
optionalField and responseField will often have the same name, but they don’t here.

A paragraph in italics at the end of the description, like this, will be present whenever the

78

command affects the configuration of the recorder. The paragraph will tell you whether the
command’s modifications are saved to nonvolatile memory immediately, or whether command X
is required to save the changes. See the Recorder Configuration section for more information.

Examples:

The entries in the Examples sections do not include an address character. To send a command to
a specific unit, put its address character immediately before the command character. For
example, to send command c to the unit with address “3”, the command line should begin with
3c. To send command c to all units, the command line should begin with 0c.

c 12 abcd (write a value)

K (the write was successful)

c 17 (read a value)

c156 (this is the value that was read)

1

Command fields: none

Response: <sramData> <checksum>

Response fields:

sramData: 4096-byte hexadecimal value. The entire current contents of the SRAM data
buffer.

checksum: 4-byte hexadecimal value. The checksum of sramData using polynomial
0x00210801.

Dump the contents of SRAM over the serial link.

The SRAM contains 204 raw records, which are described in the Understanding Recorded Data
section. The first 20 bytes are the first record, the next 20 bytes are the next record, and so on.
Only the first 4080 bytes contain record data destined for flash, the rest is unused space.

Examples:

1

2b9603b128440e1…(long)…091a72 23ff25b7

2 [<framPage>]

Command fields:

 79

framPage: 1-byte hexadecimal value. From 0 to 7f. A page address in FRAM.

Response: <framData> <checksum>

Response fields:

framData: 4096-byte hexadecimal value. The contents of the given page of FRAM.

checksum: 4-byte hexadecimal value. The checksum of framData using polynomial
0x00210801.

Dump a page of FRAM over the serial link.

The whole of FRAM contains 26214 records, which are described in the Understanding
Recorded Data section. An FRAM page (as dumped by this command) is not an integer multiple
of the size of a record, so each page will contain at least one partial record. This means that
different FRAM pages will have different data alignments. The intent is that all pages of FRAM
should be dumped then reassembled in order, which will correctly restore the records that
straddle page boundaries.

The last 8 bytes of FRAM contain housekeeping data instead of record bytes. The layout of this
information is described in the Trigger housekeeping in FRAM section.

Examples:

2

894e43ad22bce…(long)…72be24 c0dea233

3 [<flashPage>]

Command fields:

flashPage: 3-byte hexadecimal value. From 0 to MAXPAGE. A page address in flash.

Response: <flashData> <checksum>

Response fields:

flashData: 4182-byte hexadecimal value. The contents of the given page of flash, including
Reed-Solomon encoding bytes.

checksum: 4-byte hexadecimal value. The checksum of flashData using polynomial
0x00210801.

Dump a page of flash over the serial link.

This command will only work if the unit is in USER mode, since the command requires exclusive
control of flash. In any other mode, the command will fail. (Failure only happens if the unit is
recording data, warming up, or waiting for a trigger, as the unit’s default state is USER mode.)

Each page of data consists of 17 globs, each of which is 240 bytes of data (12 records) followed
by 6 bytes of Reed-Solomon ECC. The Reed-Solomon bytes are created by the recorder, but the
recorder does not process them; responsibility for performing Reed-Solomon decoding is in the
hands of the receiving computer.

80

The format of the records in the response is given in the Understanding Recorded Data section.

Examples:

3

09576dd23a21c…(long)…0a4512 c1809aa3

4

Command fields: none

Response: <configData>

Response fields:

configData: 640-byte hexadecimal value. The contents of the digital board’s nonvolatile
configuration memory.

Dump the configuration memory over the serial link.

Configuration memory consists of 5 128-byte pages containing little-endian data structures:
consts, configuration, triggerConfig, armState, trigState in that order. Each data structure has its
own 128-byte page.

The structure of this command’s response is more fully described in the Understanding
Configuration Data section.

Examples:

4

105b98d2ee7d5…(long)…326ca3

A [<armString>]

Command fields:

armString: String, up to 32 bytes long. Intended as an identifier for the current test. If more than
32 characters are given, the extras will be dropped. Can be left blank; the stored string will still
be replaced by the new one, i.e. a blank. Any character other than backspace or newline can be
included in the string.

Response: K

Response fields: none

Arms the recorder as soon as possible.

The warmup time must still elapse before the system is actually armed and looking for trigger
conditions. A value of zero is recorded for the arm delay.

 81

Write access to flash by subsequent commands is immediately blocked, requiring E to clear.

This command will fail if write access to flash has been blocked by a previous command.

Examples:

A Primary test 02Nov2016 10:17:33

K

A (blank arm string)

K

B

Command fields: none

Response: K

Response fields: none

Clear all data in FRAM.

Unlike the similar flash-clearing command b, using this command is not required before taking
new data, as FRAM does not need to be erased before it can be written to. However, if data has
been recorded, command E must be issued to unlock the flash before this command can be used.

Examples:

B

K

b [<flashPage>]

Command fields:

flashPage: Optional 3-byte hexadecimal value; a page address in flash. From 0 to MAXPAGE.
If the value entered is larger than MAXPAGE (available from command =), MAXPAGE is the
value used.

Response: K

Response fields: none

Clear some or all of the data in flash.

If flashPage is provided, all blocks will be cleared up to and including the block containing that
page. If no argument is provided, the entire flash chip will be cleared. In almost every case,
the right thing to do is to use no arguments and clear all of flash.

82

This command will skip bad blocks, like all other flash-accessing commands.

If data has been recorded, command E must be issued to unlock the flash before this command,
or any other command that writes to flash, can be used.

This command must be used to clear any existing data before new data can be safely recorded.
After issuing command E it is possible to record new data, but the old data must also be cleared,
or the new data and the old data will interfere and be unreadable. (This is just the way flash
memory works.)

Examples:

b (clear all of flash)

K

b 123cd (clear flash from block 0 through block 0x248, which is ceiling(0x123cd/0x80))

K

C

Command fields: none

Response: K

Response fields: none

Manually trigger an armed recorder.

This command only returns successfully if the recorder is armed (i.e. in mode Arm-First or Arm-
Again; see the Operating Modes section for an explanation of modes). Otherwise this command
will respond with the error “!”.

Examples:

C

K

D <delaySeconds> [<armString>]

Command fields:

delaySeconds: Decimal value. From 0 to 999999999. The number of seconds to delay arming.

armString: String, up to 32 bytes long. Intended as an identifier for the current test. If more than
32 characters are given, the extras will be dropped. Can be left blank; the stored string will still
be replaced by the new one, i.e. a blank. Any character other than backspace or newline can be
included in the string.

 83

Response: K

Response fields: none

Arms the recorder after a given time delay.

The delay time will be spent in a low-power mode, with the analog signal amplifiers and
accelerometers off. After the delay period ends, the warmup time must still elapse before the
system is actually armed.

Write access to flash by subsequent commands is immediately blocked, requiring E to clear.

This command will fail if write access to flash has been blocked by a previous command.

Examples:

D 86400 Delayed test 03Nov2016 10:17:33 (delay for 24 hours)

K

D 1800 (delay for three minutes, blank arm string)

K

d

Command fields: none

Response: <secondsRemaining>

Response fields:

secondsRemaining: Decimal value. The number of seconds until the current delay mode (Delay-
Arm or Warmup) is complete.

Gets the amount of time remaining in the current delay mode (Delay-Arm or Warmup). If the
unit is not in a delay mode, this command returns zero.

This command is often best preceded by W, to determine if the unit is currently in a delay mode.
If the unit is not, there’s no point in using this command.

Examples:

d

120 (two minutes left in current delay mode)

d

0 (less than a second left in current delay mode, or not in a delay mode)

E

84

Command fields: none

Response: K

Response fields: none

Enable write access to flash memory after data has been recorded.

This is a safety feature, intended to prevent recorded data from being accidentally overwritten
and lost. Any time data is recorded (i.e. whenever the system enters an armed state, such as
when command A is used or the Delay-Arm mode ends), arming and erasing is locked out until
this command is issued.

Don’t issue this command until you’re well and truly done with the contents of the recorder’s
memory! This command makes that information vulnerable to loss, and there is no easy way to
re-enable the lockout.

This command will fail if the recorder is armed, recording, or basically doing anything active or
time-dependent. Again, this is for the safety of the data being recorded (or soon to be recorded).

Examples:

E

K

e [<loops> <position>]

Command fields:

loops: 4-byte hexadecimal value. From 0 to 0xfffff. The large-scale current time since arming,
expressed in the number of loops that position has made through FRAM address space.

position: 4-byte hexadecimal value. From 0 to 0x3ffff. The small-scale current time since
arming, expressed in the position in FRAM address space.

Response: <loops> <position> (if command fields not given) or K

Response fields:

loops: 4-byte hexadecimal value. The large-scale current time since arming, expressed in the
number of loops that position has made through FRAM address space.

position: 4-byte hexadecimal value. The small-scale current time since arming, expressed in the
position in FRAM address space.

This command tells the user how long it’s been since the recorder was armed. See the Time
Reporting section for details, but the short version (assuming command Q returns the default
value of 0x21) is:

time_since_arm = (loops * 26214 + floor(position / 10)) * 4 microseconds

The time can be changed manually, but doing so while taking data is likely to misalign the data
subsequently recorded in FRAM, such that records would not be in the expected places. (Such
data would appear crazy at first glance, but coherent data would be recoverable by shifting the

 85

downloaded FRAM data such that the stored records line up with their expected positions.)

Command S will reset the values returned by this command if the recorder is not already armed
or recording.

Examples:

e

00000010 00038000 (recorder has been armed for 1.769444 seconds)

e

00000000 00000000 (recorder has most likely not been armed since power-up)

F <framPage> [<dumpPages>]

Command fields:

framPage: 1-byte hexadecimal value; a page address in FRAM. From 0 to 7f. The page to start
the dump.

dumpPages: Optional 1-byte hexadecimal value. From 1 to 0x80-framPage. How many pages
to dump. Defaults to 1 if not specified.

Response: K

Response fields: none

Dump FRAM data over SERDES.

Each FRAM page is 4096 bytes; 0x80 of these make up the entirety of FRAM. The data is
Reed-Solomon encoded and padded before transmission to the controlling PC.

An FRAM page does not contain an integer number of records, so not all FRAM pages will have
the same data alignment. The intent is that all of FRAM should be dumped then reassembled via
concatenation. The last 8 bytes of FRAM contain housekeeping data instead of record bytes.

Examples:

F 0 80 (dump all of FRAM)

K

F 3 (dump page 3 of FRAM)

K

f

86

Command fields: none

Response: K

Response fields: none

Force-stop all delaying and arming operations, effectively stopping everything that’s happening
in the background, and switch to USER mode. This allows the user to return the unit to an
inactive state without resetting it.

This command fails if the unit is currently recording data (i.e. it has been triggered and is still
recording); in this case, the only way to stop the unit is to reset it with command R.

Examples:

f

K

G <flashPage> [<dumpPages>]

Command fields:

flashPage: 3-byte hexadecimal value; a page address in flash. From 0 to MAXPAGE. The page
to start the dump.

dumpPages: Optional 3-byte hexadecimal value. From 1 to MAXPAGE – flashPage + 1. How
many pages to dump. Defaults to 1 if not specified.

Response: K

Response fields: none

Dump flash data over SERDES.

Each flash page is 4080 bytes prior to encoding. The data is Reed-Solomon encoded before
storage, and padded before transmission to the controlling PC.

Examples:

G 0 100 (dump the first 256 pages of flash)

K

G 7 (dump page 7 of flash)

K

g [<dumpPages>]

Command fields:

 87

dumpPages: Optional 3-byte hexadecimal value. How many pages to dump. Valid range
depends on how many pages are left in the most recently dumped memory. Defaults to 1 if not
specified.

Response: K

Response fields: none

Continue the most recent data dump over SERDES. Can continue both FRAM and flash dumps.

If the most recent page dumped was page 4 of FRAM, g will dump FRAM starting at page 5. If
the most recent page dumped was page 621 of flash, g will dump flash starting at page 622.

Examples:

F 20 (dump FRAM page 0x20)

K

g (dump FRAM page 0x21)

K

G 0 40 (dump the first 0x40 pages of flash)

K

g 40 (dump the second 0x40 pages of flash)

K

g 40 (dump the third 0x40 pages of flash)

K

H

Command fields: none

Response: K

Response fields: none

Store a test pattern in FRAM. This stores 20 bytes of data at the front of FRAM.

This command fails if data has been recorded and E has not been issued.

Examples:

H

K

h

88

Command fields: none

Response: K

Response fields: none

Store a test pattern in flash. This stores one page of data at the front of flash. The test data
contains two intentional byte errors in the second 246-byte glob to test the Reed-Solomon
correction of the data interpretation software.

This command fails if data has been recorded and E has not been issued.

Erasing the flash is not part of this command; if the flash is not erased first, the data written by
this command will interfere with the existing data and make a mess of both pages of data.

Examples:

h

K

I <iicAddress> (<data>)*

Command fields:

iicAddress: 1-byte hexadecimal value. An address on the I2C bus.

data: Up to 64 bytes of hexadecimal data. The bytes are individually parsed, so 00120004, 00
12 00 04, and 0 12 0 4 are equivalent.

Response: K

Response fields: none

Send raw data over the I2C bus. Best used together with additional documentation!

Examples:

I 13 53 (turn off power board output)

K

i <iicAddress> <dataSize>

Command fields:

iicAddress: 1-byte hexadecimal value. An address on the I2C bus.

dataSize: 1-byte hexadecimal value. How many bytes to receive from the given address.
Maximum is 0x40.

Response: (<byte>)*

 89

Response fields:

byte: 1-byte hexadecimal value. A byte retrieved from the given address. Every byte is
followed by a space, even the last one.

Receive raw data over the I2C bus. Best used in conjunction with additional documentation!

Examples:

i 13 1 (get power board output state)

01 (power is enabled)

i 16 2 (get power board temperature)

08 61 (25 degrees C)

J

Command fields: none

Response: (menu is printed)

Response fields: none

Enter the debug menu. This provides low-level access to the data stored in memory, various
configuration and status values, and other sorts of things you’d expect in a debug menu.

As the debug menu was intended for use by humans, its input and response formats often differ
from those of regular commands. Backspace won’t work, but pressing the Escape key will
usually clear an entered decimal or hexadecimal value.

This is the only means available of reading the contents of flash blocks in the bad block list.

Examples:

J

 c ‐ Analog board tests

 p ‐ Power board tests

 f ‐ FRAM tests

 l ‐ Flash tests

 s ‐ SRAM tests

 t ‐ triggering tests

 T ‐ timer tests

 i ‐ i2c tests

 m ‐ misc other tests

90

 a ‐ auto self‐test (not implemented)

 W ‐ watchdog disable

 x ‐ Exit

 Press a key:

j [<debugEnable>]

Command fields:

debugEnable: 1-byte hexadecimal value. Whether to disable (if 0) or enable (any other value)
the printing of debug messages.

Response: <debugEnable> (if command argument not given) or K

Response fields:

debugEnable: 1-byte hexadecimal value. Current value of the debug message printing flag.

Enables and disables the printing of debug messages.

Likely to provide more information (and more inscrutable information) than you truly desire,
particularly when the recorder is armed or recording data.

Changes to this setting cannot be saved in nonvolatile memory; it is always disabled on reset.

Examples:

j

00 (debug messages are disabled)

j 1 (enable debug messages)

K

K

Command fields: none

Response: K

Response fields: none

Repeat the most recent SERDES dump from FRAM. The starting page and number of pages
will be the same.

This will repeat dumps from F, g, or K itself. It is intended for cases in which Reed-Solomon
error correction or the CRC checksum reveals too many errors in transit, to provide a simple way
to retry a failed dump operation.

 91

Examples:

K

K

k

Command fields: none

Response: K

Response fields: none

Repeat the most recent SERDES dump from flash. The starting page and number of pages will
be the same.

This will repeat dumps from G, g, or k itself. It is intended for cases in which Reed-Solomon
error correction or the CRC checksum reveals too many errors in transit, to provide a simple way
to retry a failed dump operation.

Examples:

k

K

L [<blockAddress> <pageAddress>]

Command fields:

blockAddress: 2-byte hexadecimal value. From 0 to 7ff. Block address in flash.

pageAddress: 1-byte hexadecimal value. From 0 to 7f. Page address in flash.

Response: <currentBlock> <currentPage> (if command arguments not given) or K

Response fields:

currentBlock: 2-byte hexadecimal value. From 0 to 7ff. Current block address in flash.

currentPage: 1-byte hexadecimal value. From 0 to 7f. Current page address in flash.

Reads and writes the block and page addresses in flash where data will be stored next.

Only fully functional while data is not being taken (i.e. not armed or recording; mostly USER
mode); in all other circumstances only the block address will be updated. This prevents anything
from being stored in the period between the block address change and the page address change.

Useful for determining where the most recent recording session ended and for shifting the
location where the next session’s data will be stored, for example in a multi-trigger scenario.
Since these flash addresses are zeroed when the recorder is armed (specifically, when the

92

warmup period expires), this command must be issued after that event.

Examples:

L

0012 00

L 400 0 (store the next data halfway through flash)

K

l [<warmupSeconds>]

Command fields:

warmupSeconds: Decimal value. From 1 to 999. Warmup period in seconds.

Response: <warmupSeconds> (if command argument not given) or K

Response fields:

warmupSeconds: Decimal value. Current warmup period in seconds.

Reads and writes the number of seconds spent warming up the accelerometers after the recorder
is armed.

The recorder will only store data and respond to trigger conditions after this warmup time has
elapsed.

Changes to this setting are immediately saved in nonvolatile memory.

Examples:

l

120 (two minutes of warmup time)

l 5 (warm up for 5 seconds next time the unit is armed)

K

M [<triggerEnableFlags>]

Command fields:

triggerEnableFlags: 3-byte hexadecimal value. Each bit corresponds to a channel; the channel is
enabled as a trigger source if the bit is set, and disabled as a trigger source if not.

For each of the three bytes making up this value, add up the bit values corresponding to the
desired channels in the table below to get the value to enter.

 93

Response: <triggerEnableFlags> (if command argument not given) or K

Response fields:

triggerEnableFlags: 3-byte hexadecimal value. Each bit corresponds to a channel; the channel is
enabled as a trigger source if the bit is set, and disabled as a trigger source if not.

Reads and writes the trigger enable flags for all input channels.

The format for the 3-byte values is given in the table below. Each bit has a corresponding input
channel, which is enabled when the bit is 1 and disabled when the bit is 0.

Bit value 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x01

1st byte (xx____) ‐‐ ‐‐ ‐‐ ‐‐
trig_
fidu_n

heart_
sync_n

bilevel 6 bilevel 5

2nd byte (__xx__) bilevel 4 bilevel 3 bilevel 2 bilevel 1 analog 7 analog 8 analog 9 analog 11

3rd byte (____xx) analog 10 analog 12 analog 1 analog 2 analog 3 analog 5 analog 4 analog 6

Note that each channel’s corresponding bit in the 3-byte value is equal to 0x000001 left-shifted
by the channel’s index. (Channel indices are given in the table in the Channel Indexing section.)

The manual trigger (command C) is not in the table because it is always enabled.

This command does not modify nonvolatile memory. To save any changes made to these
settings, use command X.

Examples:

M

0bf001 (fiducial input 8 (trig_fidu_n), all bilevel inputs, and analog input 6 are trigger-
enabled)

M 041fc0 (enable triggering on fiducial input 7 (heart_sync_n), bilevel input 1, and analog
inputs 7 through 12)

K

m [<lowTriggerFlags> <highTriggerFlags>]

Command fields:

lowTriggerFlags: 3-byte hexadecimal value. Each bit corresponds to a channel; if the bit is set,
the channel can cause a trigger when its low threshold is satisfied.

highTriggerFlags: 3-byte hexadecimal value. Each bit corresponds to a channel; if the bit is set,
the channel can cause a trigger when its high threshold is satisfied.

For each of the three bytes making up the values, add up the bit values corresponding to the
desired channels in the table below to get the value to enter.

Response: <lowTriggerFlags> <highTriggerFlags> (if command arguments not given) or K

94

Response fields:

lowTriggerFlags: 3-byte hexadecimal value. Each bit corresponds to a channel; if the bit is set,
the channel can cause a trigger when its low threshold is satisfied.

highTriggerFlags: 3-byte hexadecimal value. Each bit corresponds to a channel; if the bit is set,
the channel can cause a trigger when its high threshold is satisfied.

Reads and writes the low and high threshold enable flags for all input channels.

Each channel has a low threshold and a high threshold, which can be enabled independently of
each other. A threshold must be enabled and satisfied to cause a trigger event.

 For analog channels, the low and high thresholds are (quiescent value – trigger offset) and
(quiescent value + trigger offset); the quiescent value is a running average of recent

measurements, and the trigger offset is set with command o. If the input value goes below the
low threshold or above the high threshold, the threshold is satisfied.

 For bilevel and fiducial channels, the low threshold is satisfied when the input is low, and the
high threshold is satisfied when the input is high. As such, enabling both thresholds for a digital
input means the channel’s trigger condition will always be satisfied.

The threshold enable flags are independent of the channel’s trigger enable flag. However, if the
channel’s trigger enable flag is disabled, the channel cannot cause a trigger regardless of any
thresholds being enabled. (This allows each channel to be enabled and disabled as a trigger
source without having to reconfigure which thresholds should be enabled every time.)

The format for the 3-byte values is given in the table below. Each bit has a corresponding input
channel, which is threshold-enabled when the bit is 1 and disabled when the bit is 0.

Bit value 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x01

1st byte (xx____) ‐‐ ‐‐ ‐‐ ‐‐
trig_
fidu_n

heart_
sync_n

bilevel 6 bilevel 5

2nd byte (__xx__) bilevel 4 bilevel 3 bilevel 2 bilevel 1 analog 7 analog 8 analog 9 analog 11

3rd byte (____xx) analog 10 analog 12 analog 1 analog 2 analog 3 analog 5 analog 4 analog 6

Note that each channel’s corresponding bit in the 3-byte value is equal to 0x000001 left-shifted
by the channel’s index. (Channel indices are given in the table in the Channel Indexing section.)

The manual trigger (command C) is not in the table because it is always enabled.

This command does not modify nonvolatile memory. To save any changes made to these
settings, use command X.

Examples:

m

0bf001 000231 (fiducial input 8 (trig_fidu_n), all bilevel inputs, and analog input 6 have low
thresholds enabled, and analog inputs 9, 1, 2, and 6 have high thresholds enabled)

m 041fc0 7 (enable low threshold on fiducial input 7 (heart_sync_n), bilevel input 1, and
analog inputs 7 through 12, and enable high threshold on analog inputs 5, 4, and 6)

K

 95

N [<overlapRecords>]

Command fields:

overlapRecords: 2-byte hexadecimal value. From 0 to 1fff. The minimum number of records of
data stored in both FRAM and flash.

Response: <overlapRecords> (if command argument not given) or K

Response fields:

overlapRecords: 2-byte hexadecimal value. The current minimum number of records of data
stored in both FRAM and flash.

Reads and writes the number of records intentionally stored in both FRAM and flash, to provide
observable continuity between the data stored in the two memories.

Because the flash data is buffered in SRAM even before a trigger, on average there will be half a
page (102 records) of data stored in both FRAM and flash even if overlapRecords is set to zero.
However, the size of this innate overlap is determined by the timing of the trigger relative to
SRAM wraparound, and may be as low as one record. The value set for overlapRecords is in
addition to the innate overlap – in other words, overlapRecords sets the absolute minimum
number of overlapping records between the two memories, but there will probably be more.

The additional overlapping of records provided by overlapRecords comes at the expense of data
stored in FRAM. The given number of records will be stored in FRAM’s circular buffer
following the trigger, overwriting the oldest data there. Be sure not to set overlapRecords so
high that the FRAM doesn’t save the amount of pre-trigger data that you require!

This command does not modify nonvolatile memory. To save any changes made to these
settings, use command X.

Examples:

N

0010 (sixteen records minimum of overlap)

N 5 (set minimum overlap to 5 records)

K

n [<pagesPerTrigger>]

Command fields:

pagesPerTrigger: 3-byte hexadecimal value. From 0 to (MAXPAGE + 1), i.e. the value returned
by command =. The number of pages of data recorded in flash per trigger.

96

Response: <pagesPerTrigger> <secondsPerTrigger> (if command argument not given) or K

Response fields:

pagesPerTrigger: 4-byte hexadecimal value. The current number of pages of data recorded in
flash per trigger.

secondsPerTrigger: decimal value. The current number of seconds spent recording per trigger,
rounded down to the nearest second.

Reads and writes the number of pages of data stored in flash every time the unit is triggered.

The maximum value of pagesPerTrigger is the value returned by command =.

Each page is 204 records; that’s 816 microseconds of recording per page if the between-record
delay (command Q) is set to the default of 0x21.

This command does not modify nonvolatile memory. To save any changes made to these
settings, use command X.

Examples:

n

002fdf (12255 pages, which is about ten seconds by default, recorded per trigger)

n 20000 (record half the flash per trigger; about 107 seconds by default)

K

O [<SerDesEnable>]

Command fields:

SerDesEnable: 1-byte hexadecimal value. Whether to disable (if 0) or enable (any other value)
SERDES output.

Response: <SerDesEnable> (if command argument not given) or K

Response fields:

SerDesEnable: 1-byte hexadecimal value. Current value of the SERDES output enable flag.

Enables and disables the SERDES high-speed serial output.

The SERDES output is automatically enabled when it’s used by a command, i.e. when
commands F, G, g, K, and k use it to dump data. It isn’t automatically disabled by anything, so
after it’s used for something it’ll just keep pumping out the sync pattern “1111100000” at 150
million bits/second. When SERDES is disabled, the output is a constant “1”.

The user is not expected to use this command. Esoteric use cases presumably exist; for example,
the user might want to minimize the number of changing signal pins, or the user might want to
measure the clock rate of the SERDES signal or the FPGA itself (it’s 1/3 the SERDES bit rate).

The status of SerDesEnable is not saved; SERDES is always disabled on startup but, as

 97

mentioned above, it’s enabled whenever necessary.

Examples:

O

01 (SERDES output is enabled)

O 0 (disable SERDES output)

K

o <channel> [<thresholdOffset>]

Command fields:

channel: 1-byte hexadecimal internal index of an analog channel, from 0 to 0xb (decimal 11).
Channel indexes are explained in the Channel Indexing section.

thresholdOffset: 2-byte hexadecimal value. From 0 to fff. (Values up to ffff are accepted, but
there’s no point.) The offset of the trigger thresholds from the quiescent measured value of the
channel.

Response: <thresholdOffset> (if command argument not given) or K

Response fields:

thresholdOffset: 2-byte hexadecimal value. The offset of the trigger thresholds from the
quiescent measured value of the channel.

Reads or writes the value separation between a channel’s quiescent value and the high and low
thresholds for that channel. An analog channel’s measured value must be above or below the
quiescent value by at least this much to cause a trigger.

The thresholdOffset value is in units of ADC counts, which is the unit of measure reported by
command S and stored during data recording.

An analog channel’s measured value ranges from 0 to fff, and any computed threshold
(quiescent value +/– thresholdOffset) exceeding that range is clamped to those limits – no
threshold can be less than 0 or greater than fff. Since an input value must exceed a threshold to
trigger it, a value of thresholdOffset greater than or equal to fff means that the channel’s
thresholds can never be satisfied.

This command does not modify nonvolatile memory. To save any changes made to these
settings, use command X.

Examples:

Z 2 42 (set threshold for internal channel index 2 (analog input 5))

K

Z b (read threshold for internal channel index 11 (analog input 7))

98

01c0

P [<powerState>]

Command fields:

powerState: 1-byte hexadecimal value. Whether to disable (if 0) or enable (any other value) the
output from the power board within the unit.

Response: <powerState> (if command argument not given) or K

Response fields:

powerState: 1-byte hexadecimal value. Current state of the power board output.

Enables and disables the power output of the recorder’s power board.

If power output is disabled, the recorder is powered off, and will naturally not respond to any
further commands.

Examples:

P

01 (power is enabled)

P 0 (disable power board output)

K (or potentially no response, as the power was just cut)

p <powerDataSelect>

Command fields:

powerDataSelect: 1-byte hexadecimal value. Which value to retrieve from the recorder’s power
board. Can take any of the following values: 1, 2, 4, 5, 6.

Response: <powerData>

Response fields:

powerData: 2-byte hexadecimal value. The value retrieved from the power board.

Gets data or voltages from the power board within the unit. The values available are:

powerDataSelect Value Interpretation

1 Initialization count Times power has been applied to unit

2 Power enabled count Times power has been enabled

 99

4 Capattery voltage X
X

Vcap  0020203.0
495

5 Battery voltage X
X

Vbat  0020203.0
495

6 Temperature 41.20020553.0  XT (deg. C)

(To sate your curiosity: Option 3 is what command P uses. It’s different from the others.)

Some sample temperature value conversions:

Value Temperature

0x0014
(20)

‐20°C

0x03E1
(993)

0°C

0x07AE
(1966)

20°C

0x08A1
(2209)

25°C

0x16E3
(5859)

100°C

Examples:

p 2 (times power has been enabled)

002b

p 6 (temperature)

07b0 (a bit over 20°C)

Q [<betweenRecordDelay>]

Command fields:

betweenRecordDelay: 2-byte hexadecimal value. From 0 to ffff. The number of processor
cycles to pause between the end of one record’s acquire-and-store operation and the beginning of
the next record’s acquire-and-store operation.

Response: <betweenRecordDelay> (if command argument not given) or K

Response fields:

betweenRecordDelay: 2-byte hexadecimal value. The number of processor cycles to pause
between the end of one record’s acquire-and-store operation and the beginning of the next
record’s acquire-and-store operation.

Reads and writes the length of the pause between record acquisition cycles. This determines the

100

sampling rate of the recorder.

An explanation of this command’s effect on the sampling rate can be found in the Time
Reporting section. The short version is that, for a sampling rate of 250,000 samples per second,
leave betweenRecordDelay set to its default of 0x21. The maximum recording rate, with a
betweenRecordDelay of zero, should work fine but hasn’t been rigorously tested.

The following table contains some example betweenRecordDelay values, with their effects:

betweenRecordDelay Cycles/sample us/sample Sampling rate (ksps)

C2A9 (49833) 50000 1000 1
12E1 (4833) 5000 100 10
0341 (833) 1000 20 50
014D (333) 500 10 100
0053 (83) 250 5 200
0021 (33) 200 4 250
0000 (0) 167 3.34 299.4
brd brd + 167 (brd + 167) / 50 50000 / (brd + 167)

This command does not modify nonvolatile memory. To save any changes made to these
settings, use command X.

Examples:

Q

0021 (default, 250,000 samples per second)

Q 0 (maximum sampling rate, about 299,400 samples per second)

K

q <channel> [<triggerMinCount>]

Command fields:

channel: 1-byte hexadecimal internal index of an input channel, from 0 to 0x13 (decimal 19).
Channel indexes are explained in the Channel Indexing section.

triggerMinCount: 2-byte hexadecimal value. From 0 to ffff. The minimum number of
consecutive threshold-satisfying records needed to cause a trigger on the given channel.

Response: <triggerMinCount> (if command argument not given) or K

Response fields:

triggerMinCount: 2-byte hexadecimal value. The minimum number of consecutive threshold-
satisfying records needed to cause a trigger on the given channel.

Read or write the minimum number of consecutive threshold-satisfying records needed for a

 101

channel to cause a trigger. Any non-threshold-satisfying record will restart the count from zero.

Setting a channel’s triggerMinCount to 0 or 1 will cause a trigger during the first record that
satisfies an enabled threshold on that channel.

This command does not modify nonvolatile memory. To save any changes made to these
settings, use command X.

Examples:

q c 5 (require 5 consecutive threshold-satisfying records to trigger on digital input 1)

K

q 4 (read requirement for analog input 2)

0012 (eighteen consecutive threshold-satisfying records required)

R

Command fields: none

Response: K

Response fields: none

Reset the recorder’s microcontroller, FPGA fabric elements, and flash chip.

This resets most settings to their saved values. The settings of the analog boards, which are set
by commands V, Y, y, and Z, are not reset.

Examples:

R

K

(reset takes effect)

Hello, world!

(etc.)

S

Command fields: none

Response: <analogVals> <digitalVals> <internalAnalogVals>

Response fields:

analogVals: 12 separate 2-byte hexadecimal fields. The current measurements of the analog
inputs, sorted by ascending channel index.

102

digitalVals: 8 separate 1-byte hexadecimal fields. Each field contains the current value of a
single bilevel or fiducial input, sorted by ascending channel index. Either 00 or 01.

internalAnalogVals: 2 separate 2-byte hexadecimal fields. The current measurements of Vcap
and Vbat (capattery and battery voltages) according to the SmartFusion’s internal ADCs.

This table shows how the response fields correspond to channel indexes, analog/bilevel/fiducal
inputs, and internal voltages. The top row is the response from the example S command.
S resp. 0b38 08a9 0b8c 094d 09b4 0b06 0ac7 0a09 0af5 0b2a 0974 0b71 00 00 00 00 00 00 01 01 0450 0445

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Vcap Vbat

Input a6 a4 a5 a3 a2 a1 a12 a10 a11 a9 a8 a7 b1 b2 b3 b4 b5 b6 f7 f8 Vcap Vbat

Measure the current values of all inputs, as taken directly from the various ADCs and input pins.
The analog inputs’ values are reported in units of ADC counts.

This command will return wrong analog channel values during Delay-Arm mode, as the
analog signal amplifiers and accelerometers are shut down during the delay. Bilevel channel
values may also be incorrect during Delay-Arm; although the comparators are not shut down,
the DACs that generate the threshold voltages (as set by command Z) are shut down.

If the unit is already taking data, the values will be skimmed from the running collection process.
If not, the unit will be momentarily armed to collect data. (This doesn’t affect the contents of
FRAM or flash memory, and doesn’t lock access to flash the way normal arming does. It does,
however, clear the current FRAM address (which is returned by command e).)

Examples:

S

0b38 08a9 0b8c 094d 09b4 0b06 0ac7 0a09 0af5 0b2a 0974 0b71 00 00 00 00 00 00 01 01 0450
0445

s

Command fields: none

Response: <status>

Response fields:

status: A string containing the unit’s status. It consists of several sub-fields separated from
each other by two spaces, each of which begins with one of the following:

Subfield Header Subfield Contents

UNIT
LABEL:

Unit’s label (as set by command u), padded to 32 bytes with \0 chars.

S/N: Unit’s serial number (as set by command U).

MODE: The current operating mode.

 103

SUBMOD
E:

The current operating submode. Same as command W.

STATUS:
Whether a timer is counting down, and if so, its time remaining (as
returned by command d) and the purpose of the countdown

DATA:
Whether arming is allowed, and if not, whether and when a trigger
happened in the stored data

ARM
STRING:

The arm string specified as part of the most recent arm command. Same
as command z.

PAGES
RECORDE
D:

The number of pages of data recorded in the flash. Only checks that the
data is present, not whether it’s valid. Same as command _. This
subfield is only present when the unit is in USER mode.

PAGES
FUNCTIO
NAL:

The number of flash memory pages that can hold data (i.e. not part of
bad blocks). Same as command =.

BAD
BLOCKS:

The number of bad blocks present in the bad block table (and thus,
presumably, in flash). Same as the first response field of command ‐.

UNIT
ADDRESS:

The address of the current unit. Expressed as a hexadecimal value (as in
command +). If the address is a printable character, the hexadecimal
value will be followed by the corresponding character, e.g. “42 (B)”

VERSION: Version (“VER”) and compilation date (“COMP”) of the unit’s firmware

DONE (Nothing, “DONE” is the end of the response)

Read the high-level status of the unit in a single string.

For more information about modes, see the Operating Modes section.

The unit label and arm string are padded to 32 bytes with null bytes, which makes printing the
full output of this command (as well as u, w, and z) more tricky. Using printf("%s") will end the
printing when the nulls start; one alternative is fwrite(), which can make sure that all the
characters get printed.

Examples:

s

UNIT LABEL: AER‐006 Hangar Queen S/N: 6 MODE: ARM_FIRST SUBMODE: W
STATUS: Warming up, seconds left: 3 DATA: Data present, cannot arm; untriggered
ARM STRING: initial demo PAGES RECORDED: 00000000 PAGES
FUNCTIONAL: 00040000 BAD BLOCKS: 00 UNIT ADDRESS: 48 (H) VERSION:
VER_2014_Jun 14 2016_COMP_Jun 14 2016 17:10:57 DONE

s

104

UNIT LABEL: AER‐006 Hangar Queen S/N: 6 MODE: USER SUBMODE: L STATUS:
Timer idle DATA: Data present, cannot arm; trigger occurred at T_arm + 1.983872
seconds ARM STRING: sec delay test PAGES RECORDED: 00000014 PAGES
FUNCTIONAL: 00040000 BAD BLOCKS: 00 UNIT ADDRESS: 36 (6) VERSION:
VER_2014_Jun 14 2016_COMP_Jun 14 2016 17:10:57 DONE

T [<verboseMode>]

Command fields:

verboseMode: 1-byte hexadecimal value. Whether to disable (if 0) or enable (any other value)
verbose output. Defaults to disabled if not given.

Response: [<verboseStuff>] <resultCode> <testResult>

Response fields:

verboseStuff: A string containing individual errors as they are discovered. May contain
newlines, which complicates parsing when verbose mode is enabled. Only contains information
about FRAM errors.

resultCode: 1-byte hexadecimal value. Zero if all tests were successful. Bits that are set
correspond to tests that failed or couldn’t be run.

testResult: A string containing an explanation of the resultCode value.

Runs a self-test of the hardware connections to the FRAM and flash memory chips.

FRAM communication is tested in more depth than flash. When verbose mode is enabled, this
command will try to determine which FRAM data/address lines are disconnected. A control line
being disconnected could cause many data/address lines to be reported as bad.

Bits set in resultCode indicate various errors:

Bit value Meaning

0x00 No errors

0x01 FRAM test 1 failed

0x02 Flash test failed

0x04 FRAM test 2 failed

0x80 Couldn’t run FRAM tests because data is present

Examples:

T

00 All tests OK.

T

 105

80 Unable to test FRAM when data is present.

T 1 (verbose output enabled; in this example all possible errors are illustrated)

Error in data line: 8 9 13 Error in address line: 3 4 Data mismatch at address 00000008
Data mismatch at address 00000010
FRAM test complete.
07 FRAM connection error. Flash communication error.
K

t [<multiTrigEnable>]

Command fields:

multiTrigEnable: 1-byte hexadecimal value. Whether to disable (if 0) or enable (any other value)
multiple triggering.

Response: <multiTrigEnable> (if command argument not given) or K

Response fields:

multiTrigEnable: 1-byte hexadecimal value. Current value of the multi-trigger enable flag.

Enables and disables multiple triggering.

When multiple triggering (aka multi-trigger) is enabled, after the first set of data is taken, the
recorder switches to mode ARM_AGAIN and waits for another trigger condition. (Commands
may be used at any time to redefine the conditions for triggering or the amount of data to be
stored.)

Each trigger causes the collection of the given number of pages in flash (set with command n)
until power is lost, flash is full, command R is used, or command f is used while not recording.

After the first trigger, FRAM is not written to; no other triggers have a fixed amount of pre-
trigger data, but because SRAM is used as a circular buffer while waiting for the next trigger, an
average of ~100 records of pre-trigger data will be available for each subsequent trigger.

This command does not modify nonvolatile memory. To save any changes made to these
settings, use command X.

Examples:

t

00 (multi-trigger is disabled)

t 1 (enable multi-trigger)

K

106

U [<serialNumber>]

Command fields:

serialNumber: Decimal value. From 0 to 999999999. Unit’s serial number.

Response: <serialNumber> (if command argument not given) or K

Response fields:

serialNumber: Decimal value. Unit’s serial number.

Read or write the serial number of the recorder.

This has no effect on the unit’s operation; it’s simply for the purpose of telling different units
apart. The status command s and identity command w include this value in their outputs.

Changes to this setting are immediately saved in nonvolatile memory.

Examples:

U

16

U 2001

K

u [<unitLabel>]

Command fields:

unitLabel: String, up to 32 bytes long. Intended for unique identification of the unit.

Response: <unitLabel> (if command argument not given) or K

Response fields:

unitLabel: String, up to 32 bytes long.

Read or write the description string of the recorder.

This has no effect on the unit’s operation; it’s simply for the purpose of telling different units
apart. The status command s and identity command w include this value in their outputs.

The string is padded to 32 bytes with null bytes, which makes printing the full output of this
command (as well as s, w, and z) more tricky. Using printf("%s") will end the printing when the
nulls start; one alternative is fwrite(), which can make sure that all the characters get printed.
Since nothing follows the nulls on the response line, it’s actually okay to just use printf() for this
command, but not for commands such as s.

Changes to this setting are immediately saved in nonvolatile memory.

Examples:

 107

u

AER‐006 Hangar Queen

u Production Unit 15

K

V <boardSelect> <referenceSelect> [<voltageValue>]

Command fields:

boardSelect: 1-byte hexadecimal value. From 1 to 3. Each board handles 4 analog inputs and 2
bilevel inputs.

Board Analog inputs Bilevel inputs

1 1‐4 1, 2

2 5‐8 3, 4

3 9‐12 5, 6

referenceSelect: 1-byte hexadecimal value. Either zero or nonzero. If zero, refers to the 2.000V
reference (internal bias); if nonzero, refers to the 2.222V reference (output bias).

voltageValue: 2-byte hexadecimal value. A value used by a DAC to generate the reference
voltage selected by referenceSelect. Ideally, the resulting voltage is
(voltageValue/0x10000)*5V.

Response: <voltageValue> (if command argument not given) or K

Response fields:

voltageValue: 2-byte hexadecimal value. The value currently used by a DAC to generate the
reference voltage selected by referenceSelect. Ideally, the resulting voltage is
(voltageValue/0x10000)*5V.

Read or write the value being used by an analog board to generate a reference/bias voltage.

See the analog board documentation for more details, but the short version is as follows: The
2.000V reference voltage provides a center point for the post-offset input, and the 2.222V
reference voltage drives the final output filter.

This command does not modify nonvolatile memory. This setting will be reset to the saved value
upon power cycle, but not when command R is issued. To save a new value or revert to the
saved value, use command X.

Examples:

V 2 0

6666 (default 2 volt value)

108

V 3 1 71c7 (default 2.222 volt value)

K

v [<armOnPower‐upFlag> [<delaySeconds> <armString>]]

Command fields:

armOnPower‐upFlag: 1-byte hexadecimal value. Either zero (do not arm on power-up) or
nonzero (arm on power-up). This value can be set without altering the other two stored values by
including only this field in the command.

delaySeconds: Decimal value. From 0 to 999999999. The number of seconds to delay arming.

armString: String, up to 32 bytes long. Intended as an identifier for the current test. If more than
32 characters are given, the extras will be dropped. Can be left blank; the stored string will still
be replaced by the new one, i.e. a blank. Any character other than backspace or newline can be
included in the string.

Response: <armOnPower‐upFlag> <delaySeconds> <armString> (if no command arguments are
given) or ! (if flash write access is blocked) or K

Response fields:

armOnPower‐upFlag: 1-byte hexadecimal value. Either 00 (do not arm on power-up) or 01 (arm
on power-up).

delaySeconds: Decimal value. The number of seconds to delay arming.

armString: The string to be recorded as the arming string when the arm-on-power-up event
actually happens.

Reads and writes the recorder’s arm-on-power-up configuration. These settings allow the
recorder to automatically arm itself at some time after its power supply is enabled. The effect is
equivalent to a D command applied immediately upon power-up, using the delaySeconds and
armString values stored by this command.

When a power-up or reset happens, this is what occurs:
1. If arm‐on‐power‐up is disabled, do nothing special; ignore the rest of this list
2. Print a message describing what’s about to happen (failure to arm, immediate arm, or delayed

arm)
3. If flash write access is blocked, the arming attempt failed; ignore the rest of this list

4. If this command’s delaySeconds is zero, arm immediately as in command A using the
armString value from this command, and disable arm‐on‐power‐up to prevent a second
automatic arming; ignore the rest of this list

5. Enter Delay‐Arm mode as in command D using the delaySeconds and armString values from
this command

6. If Delay‐Arm mode finishes without interruption, disable arm‐on‐power‐up to prevent a second

automatic arming, and block write access to flash (requires E to clear)

 109

7. If Delay‐Arm mode is interrupted (e.g. with commands f, A, or D, or a loss of power), leave arm‐
on‐power‐up enabled for next time

The write action of this command (i.e. using the command with any command arguments at all)
will fail if write access to flash has been blocked by a previous command. This prevents the user
from setting up an arm-on-power-up that cannot be carried out.

It’s possible to enable/disable arm-on-power-up without changing the stored delaySeconds and
armString values by only including armOnPower‐upFlag in the command.

An arm-on-power-up recording session will probably not include adjusting the configuration
between power-up and arming, so be sure that the configuration saved in nonvolatile memory
with command X is satisfactory before attempting arm-on-power-up recording.

Changes to this setting are immediately saved in nonvolatile memory.

Examples:

v (read status)

01 180 This is an arm string (arm-on-power-up enabled, delay for three minutes after power-
up)

v 0 (disable arm-on-power-up, leave other settings alone)

K

v 1 (enable arm-on-power-up using existing settings)

K

v 1 86400 Test01 05Nov2016 07:12:56 (enable arm-on-power-up, delay for 24 hours after
power-up)

K

W

Command fields: none

Response: <currentMode>

Response fields:

currentMode: A single character reflecting the current state of the recorder.

Read the current mode of the unit – whether it’s armed, recording data, has recorded data, and so
on. See the “Submode” column of the table in the Operating Modes section to interpret this
command’s response.

Examples:

110

W

U (User mode)

W

F (Arm-First mode)

w

Command fields: none

Response: <identity>

Response fields:

identity: A string containing the unit’s essential identity. It consists of several sub-fields
separated from each other by two spaces, each of which begins with one of the following:

Subfield Header Subfield Contents

Unit label: Unit’s label (as set by command u), padded to 32 bytes with \0 chars

S/N: Unit’s serial number (as set by command U)

Version: Version (“VER”) and compilation date (“COMP”) of the unit’s firmware

Read the identity of the unit in a single string.

The unit label is padded to 32 bytes with null bytes, which makes printing the full output of this
command (as well as s and u) more tricky. Using printf(“%s”) will end the printing when the
nulls start; one alternative is fwrite(), which can make sure that all the characters get printed.

Examples:

w

Unit label: AER‐006 Hangar Queen S/N: 6 Version: VER_2005_Dec 21
2015_COMP_Dec 21 2015 20:47:23

X <saveConfiguration>

Command fields:

saveConfiguration: 1-byte hexadecimal value. Either 0 (revert configuration from saved values)
or nonzero (save current configuration to nonvolatile memory).

Response: K

 111

Response fields: none

Save or revert the current configuration of the unit to the values stored in nonvolatile memory.

Almost all commands that read or write a setting only read or write the temporary, stored-in-
RAM version of that setting; to save such a setting’s value for future use, this command must be
used. The temporary settings, not the saved settings, are the ones in effect, but they will reset to
the saved versions on the next power-up or, for most settings, the next reset (command R).

All settings that can be saved and reverted will be saved or reverted by this command. This
includes the settings stored on the analog boards.

Because the saved values are loaded on power-up, they will most likely be the values used when
doing arm-on-power-up recording, so be sure to test that the values loaded on power-up are the
values you want to use.

Examples:

X 1 (Save current configuration)

K

X 0 (Revert to saved configuration)

K

Y <channel> [<offset>]

Command fields:

channel: 1-byte hexadecimal internal index of an analog channel, from 0 to 0xb (decimal 11).
Channel indexes are explained in the Channel Indexing section.

offset: 2-byte hexadecimal value. The offset added to the analog input voltage prior to the
application of gain. Ideally, the offset voltage is (offset/0x10000)*5V.

Response: <offset> (if command argument not given) or K

Response fields:

offset: 2-byte hexadecimal value. The offset added to the analog input voltage prior to the
application of gain. Ideally, the offset voltage is (offset/0x10000)*5V.

Read or write the offset value for analog inputs. The offset value set with this command is
passed directly to a DAC on the proper analog board.

The intent is that the quiescent value of each analog input will be offset (using this command) to
be equal to the 2.000V reference voltage for a particular analog board. This will cause any
deviation from that quiescent value to be amplified by a gain factor (set by command y). The
reference voltage is set using command V.

This command does not modify nonvolatile memory. This setting will be reset to the saved value
upon power cycle, but not when command R is issued. To save a new value or revert to the

112

saved value, use command X.

Examples:

Y 0 (read offset of analog input 6)

6666

Y 7 4099 (set offset of analog input 10)

K

y <channel> [<gain>]

Command fields:

channel: 1-byte hexadecimal internal index of an analog channel, from 0 to 0xb (decimal 11).
Channel indexes are explained in the Channel Indexing section.

gain: 1-byte hexadecimal value. The gain factor applied to the input voltage after offset but
before filtration and measurement. Can be any of the following values: 1, 2, 4, 8, 0x10, 0x20,
0x40, 0x80.

Response: <offset> (if command argument not given) or K

Response fields:

gain: 1-byte hexadecimal value. The gain factor applied to the input voltage after offset but
before filtration and measurement.

Read or write the gain factor for analog inputs.

The gain factor value set with this command is applied after the offset value set with command
Y. This gain is applied to the difference between the post-offset channel input voltage and the
analog board’s 2.000V reference voltage; in other words, if the post-offset input voltage is the
same as the reference voltage, a higher gain won’t affect the output.

This command does not modify nonvolatile memory. This setting will be reset to the saved value
upon power cycle, but not when command R is issued. To save a new value or revert to the
saved value, use command X.

Examples:

y 0 (read gain of analog input 6)

01

y 7 20 (set gain of analog input 10 to 0x20)

K

 113

Z <channel> [<threshold>]

Command fields:

channel: 1-byte hexadecimal index of a digital input, from c (decimal 12) to 11 (decimal 17).
Channel indexes are explained in the Channel Indexing section.

threshold: 2-byte hexadecimal value. A value used by a DAC to generate the threshold voltage.
Ideally, the resulting voltage is (threshold /0x10000)*5V. Maximum value is 0xa8f5 (decimal
43253), for a maximum voltage of 3.3V.

Response: <threshold> (if command argument not given) or K

Response fields:

threshold: Current threshold value of the selected digital input. Ideally, the threshold voltage is
(threshold /0x10000)*5V.

Read or write the threshold voltage of a digital input. The digital channel value will be high if
and only if the voltage on the channel’s input line exceeds the threshold voltage.

The maximum allowed threshold voltage is 3.3 volts. This is because the voltage runs to a
comparator powered by a 3.3V supply; the comparator could be damaged if its inputs much
exceed 3.3V. (Each bilevel input signal is clamped by hardware to a range of 0V to 3.3V, so the
input signals won’t damage the comparators either.)

This command does not modify nonvolatile memory. This setting will be reset to the saved value
upon power cycle, but not when command R is issued. To update the saved value or revert to the
saved value, use command X.

Examples:

Z c 6789 (set threshold for digital input 1)

K

Z 11 (read threshold for digital input 6)

5999

z

Command fields: none

Response: <armString>

Response fields:

armString: String, up to 32 bytes long.

Read the string set by the most recent successful arm operation. This can be used to identify
what the most recent test was all about.

114

The string is padded to 32 bytes with null bytes, which can make printing the full output of this
command (as well as s, u, and w) more tricky. Using printf(“%s”) will end the printing when the
nulls start; one alternative is fwrite(), which can make sure that all the characters get printed.
Since nothing follows the nulls on the response line, it’s actually okay to just use printf() for this
command, but not for commands such as s.

Examples:

z

Primary test 02Nov2016 10:17:33

; [<Power‐downEnable>]

Command fields:

Power‐downEnable: 1-byte hexadecimal value. Whether to disable (if 0) or enable (any other
value) automatic power-down when recording is complete.

Response: <Power‐downEnable> (if command argument not given) or K

Response fields:

Power‐downEnable: 1-byte hexadecimal value. Current value of the flag controlling automatic
power down.

Enables and disables automatic power-down.

If this flag is enabled, then the recorder will turn itself off when it reaches the Power-down
mode. This happens when the Recording mode records the pre-defined number of records (set
by command n) with multi-trigger off (set by command t), or when the recorder completely fills
the flash with recorded data.

Changes to this setting are immediately saved in nonvolatile memory.

Examples:

;

00 (automatic power-down is disabled)

; 1 (enable automatic power-down)

K

~ [<heartbeatEnable>]

Command fields:

heartbeatEnable: 1-byte hexadecimal value. Whether to disable (if 0) or enable (any other

 115

value) the heartbeat signal output.

Response: <heartbeatEnable> (if command argument not given) or K

Response fields:

heartbeatEnable: 1-byte hexadecimal value. Current value of the heartbeat signal output enable
flag.

Enables and disables the heartbeat signal output.

When enabled, the recorder generates a 1Hz square wave heartbeat signal. It appears on the
Heart_Sync_n line, which is recorded as part of each record. Disabling the heartbeat signal
allows the Heart_Sync_n line to be driven by an external source, providing a fiducial signal
which is independent of trigger events. This is particularly useful for a multi-unit system, in
which a shared external fiducial provides synchronization of the recorded data on different units.

In a pinch, with the heartbeat signal disabled, Heart_Sync_n could be used as an extra digital
input.

Changes to this setting are immediately saved in nonvolatile memory.

Examples:

~

00 (heartbeat output is disabled)

~ 1 (enable heartbeat output)

K

+ [<unitAddress>]

Command fields:

unitAddress: 1-byte hexadecimal value. The ASCII representation of the character to be used for
the unit’s address. For decimal digits, just add 0x30 to the digit. A table of ASCII characters is
available at www.asciitable.com and many other places.

Response: <unitAddress> (if command argument not given) or K

Response fields:

unitAddress: 1-byte hexadecimal value. The ASCII representation of the character to be used for
the unit’s address.

Sets the recorder’s address for serial communication.

The value of unitAddress is an ASCII value. As such, an argument of 2 will set the address
character to an unprintable character. If you want to use the character “2” as the recorder’s
address, use the ASCII representation of the character “2”, which is 0x32; the argument to use
for an address character of “2” is thus 32.

The default value of unitAddress is 0xff. This must be changed before the recorder can be used

116

in a multi-unit system, so that each unit can be individually communicated with. To use this
command on an unconfigured recorder, connect it to a serial interface with no other recorders
connected, then use the broadcast address “0” to send this command to all connected recorders;
since only one recorder is connected to the interface, only its unitAddress will be updated. For
example, to set a new recorder’s address to “1”, the complete command line to send would be
“0+ 31”.

Setting unitAddress to the value 0x00 will cause the recorder to always act as if its address
character has already been received, thus treating the first character on each received line as a
command character. Getting the unit out of this state therefore requires a command line such as
“+ 31”, with no initial address character.

A few unitAddress values are invalid, and will cause this command to fail. These values are
0x30 (which is the broadcast address character “0”) and 0x08 (which is the backspace character).

Changes to this setting are immediately saved in nonvolatile memory.

Examples:

+

34 (address character is ‘4’)

+ 41 (set address character to ‘A’)

K

=

Command fields: none

Response: <goodPages>

Response fields:

goodPages: 4-byte hexadecimal value. The number of functional pages in the flash chip.

This command returns the maximum data capacity of a recorder.

This can vary from unit to unit, as some recorders may have flash chips with bad blocks. Any
pages in a bad block cannot be safely used to store data, which reduces the amount of space
available for recorded data. This command interprets the bad block list to determine how many
pages are left.

The value of goodPages is the maximum argument to command n, which sets the number of
pages to be recorded after a trigger.

Examples:

=

00040000 (no bad blocks present)

 117

=

0003fe80 (3 bad blocks present)

_ (underscore)

Command fields: none

Response: <firstEmptyPage>

Response fields:

firstEmptyPage: 4-byte hexadecimal value. The address of the first empty page in flash.

This command returns the amount of data currently recorded in flash.

This command will only work if the unit is in USER mode, since the command requires exclusive
control of flash. In any other mode, the command will fail. (Failure only happens if the unit is
recording data, warming up, or waiting for a trigger, as the unit’s default state is USER mode.)

The first empty page, by definition, is the address following the last recorded page. Since page
addressing starts at zero, the response from this command is identical to the number of pages that
have been recorded.

Any non-blank pages qualify as “recorded data”, so if data is recorded over existing data, the
value returned by this command will be the greater of the two recording lengths. (The
overlapping parts of the data will be trashed, of course.)

If command b was used to clear only some of flash, it’s possible that this command will be
misled by uncleared data, as this command uses a binary search to find the first empty page.
This is easily prevented by always clearing all of flash when using command b.

Examples:

_

00000400 (1024 pages of data have been recorded in flash)

_

00040000 (262144 pages recorded – no bad blocks present, and all pages contain data)

_

00000000 (no data has been recorded, flash is blank)

‐ (hyphen)

Command fields: none

118

Response: <badBlocks> (<blockIndex>)*

Response fields:

badBlocks: 1-byte hexadecimal value. The number of blockIndex fields in the response.

blockIndex: 2-byte hexadecimal value. The index of a bad block in the flash chip. The bad
blocks are listed in ascending order.

This command reveals which blocks in flash memory have been marked as bad.

Under almost no circumstances will the user need to care about this information. However, it is
possible that blocks have been marked bad incorrectly; if this command returns sequences of
blocks, this may be the case. Incorrect bad-block marking is almost definitely present if block 0
is marked bad, as the manufacturer of the flash chip guarantees that block to be good.

Even if blocks have been incorrectly been marked bad, the only effect on recorder operation is
that slightly less space will be available in flash for recorded data.

Examples:

‐

00 (no bad blocks present)

‐

05 0013 001f 005e 0080 01a9 (5 bad blocks present)

?

Command fields: none

Response: (command list is printed)

Response fields: none

This command prints a list of commands and enables input echo. The intent of this command is
to make life easier for a human operator.

“Input echo” means that the unit will send back every character it receives, including the effects
of backspace. This makes the “local echo” setting on a terminal program unnecessary, as
entered commands will be visible to the user. However, broadcast commands will only be
echoed if the computer is connected directly to the recorder, without a serial multiplexer being
involved (see the Communicating with Recorders section for details); in this case, local echo
may be preferable.

The commands are listed with a brief description, the argument fields they take ([ARGS]), and the
response fields they return ([RESP]).

Examples:

 119

?

 1 ‐ serial‐read SRAM in ascii with checksum [ARGS] x [RESP] <4096 bytes of data> <4
byte checksum>

 2 ‐ serial‐read FRAM in ascii with checksum [ARGS] <1 byte page address (0 to 0x7f)>
[RESP] <4096 bytes of data> <4 byte checksum>

...

 ? ‐ print this help message and enable input echo

 / ‐ disable input echo, for GUI‐compatible operation

 Press a key:

/

Command fields: none

Response: Disabling input echo, for return to automated use.

Response fields: none

This command disables input echo, in which the recorder repeats back each character it receives.

Input echo makes a human user’s life easier by letting them see what they’re typing, but a
computer program will probably not expect to receive a copy of the command it just sent. To
prevent such response-parsing problems, this command should be sent when switching from
human-controlled interaction to computer-controlled interaction.

One option is to have a controlling program send this command when it starts, to ensure that the
recorder is in the proper mode for automated control.

Examples:

/

Disabling input echo, for return to automated use.

120

 121

DISTRIBUTION

 AFRL / RWMFI
 Attn: Kenneth J. Williamson
 306 W. Eglin Blvd, Bldg. 432
 Eglin AFB, FL 32542-5430

1 MS0382 Christopher Eiting 2158
5 MS0386 Matthew Brewer 2159
1 MS0661 Anne L Benz 2627
1 MS0661 Jared Bare 2627
1 MS0661 Shane K Curtis 2627
1 MS0661 Roberto A Jimenez 2627
1 MS0661 Michael E Partridge 2627
1 MS1135 James A Dykes 1531
1 MS1135 John C Griffin 1535
1 MS1160 Doug Dederman 5421
1 MS1160 Jason W Brown 5421
1 MS1160 Erik Nishida 5421
1 MS1248 David P McGrogan 5631
1 MS9102 Kathryn R. Hughes 8133

1 MS0899 Technical Library 9536 (electronic copy)

122

